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Abstract

We estimate monthly conditional market beta of 10 momentum and 25 size and

book-to-market portfolios between 1946 and 2016 using a multivariate GARCH model.

In the ICAPM conditional market beta are important determinants of expected re-

turns and covariances of assets. Thus, shocks to conditional market beta imply shocks

to the investment opportunity set. We define shocks to conditional market beta as

state variables, and document that they carry economically large and statistically sig-

nificant risk premia. Moreover, we show that shocks to conditional market beta are

related to but clearly distinct from the Fama-French-Carhart size, book-to-market and

momentum factors.
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1 Introduction

Merton (1973) extends the static CAPM of Sharpe (1964) and Lintner (1965) to an in-

tertemporal CAPM (or ICAPM). In a dynamic model investors do not only care about the

current conditional expected return-risk trade-off, but also about shocks to the investment

opportunity set. Therefore, in the ICAPM the expected return of an asset depends on its

covariation with the market (as in the static CAPM) and its covariation with state variables

which capture changes in the investment opportunity set.

The problem in empirical research is that state variables are not observable. A large

empirical literature is investigating macroeconomic and financial quantities that may be

suitable ICAPM state variables and pricing factors that explain the cross-section of expected

asset returns. But, the economic interpretation of some of the most prominent factors is an

ongoing debate.1,2

We take a different approach. In the ICAPM conditional market beta (i.e., exposures of

assets to market risk) are important determinants of expected returns and the covariance

matrix of assets (i.e., the investment opportunity set)3. Therefore, shocks to conditional

market beta are shocks to the investment opportunity set. It is then natural to identify

ICAPM state variables by unexpected changes in conditional market beta. To our knowledge

we are the first to take this approach.

Our aim is to empirically quantify the importance of shocks to conditional market beta

as state variables. In particular, we are interested whether they carry a risk premium.

Moreover, we would like to know how firm characteristics such as size, book-to-market ratio

and momentum are related to the time-series of conditional market beta. For example,

1Fama and French (1993) construct the prominent size and book-to-market factors, Carhart (1997) intro-
duces the momentum factor, Chen et al. (1986) test several macroeconomic variables, Shiller and Campbell
(1988) discuss the relevance of the price-dividend ratio, Schwert (1989) analyzes the behavior of stock market
volatility, Hou et al. (2015) and Hou et al. (2016) introduce investment and profitability factors motivated
by q-theory. This list is of course not exhaustive.

2Specifically for the Fama-French size and book-to-market factors Ferson and Harvey (1999) provide a
nice overview of the debate: It is not clear whether (i) these factors are ICAPM state variables and actually
explain expected returns, or (ii) they are not state variables but are useful to identify mispriced assets, or
(iii) they are not state variables and the observed explanatory power of the factors is simply due to data
mining or some biases in the data.

3Although other state variables may also matter for the determination of expected returns and covariances,
conditional market beta are always determinants of the conditional return distribution.
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a natural question is whether the Fama-French-Carhart (FFC) size, book-to-market and

momentum factors capture risks in conditional market beta. We show that the answer is

yes, and thus, we argue that these factors (at least to some extend) are proxies for changes

in the investment opportunity set.

We build on the promising results of a growing literature which shows that conditional

market beta can be estimated using a multivariate GARCH model (Bollerslev et al., 1988;

Ng, 1991; Bali, 2008; Bali et al., 2009; Bali and Engle, 2010; Bali et al., 2016; Engle, 2015; Bali

and Engle, 2016). We estimate conditional market beta for 10 momentum and 25 size and

book-to-market stock portfolios from 1946 to 2016. We show that sorting stocks according

to past performance (momentum), size or book-to-market ratios is equivalent to divide them

into groups such that conditional market beta of stocks within each group closely move

together. Moreover, we use principal component analysis to construct factors that capture

common shocks to conditional market beta, and show that the first few components explain

most of the variation in changes in conditional market beta. We then estimate risk premia

of the principal components and find that common shocks to conditional market beta are

compensated by economically large and statistically significant premia. This implies that

common shocks to conditional market beta are important state variables.

Finally, we document some overlap between our factors capturing common shocks to

conditional market beta and the three FFC factors. This finding provides some economic

interpretation for the FFC factors. It further suggests that they are suitable proxies for

state variables in the ICAPM, at least to the extend that they capture common shocks to

conditional market beta. We do not take a stand on whether the FFC factors are also suitable

proxies for other shocks to the investment opportunity set beyond changes in conditional

market beta, for instance, shocks to the conditional market risk premium.

We do not claim that shocks to conditional market beta describe the full set of state

variables. Neither do we argue that they are able to explain the entire cross-section of

expected asset returns. For instance, our approach does not consider time-variations in the

market risk premium or the risk premia of the state variables. Our focus is on the pricing

implications of shocks to conditional market beta.
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Our paper is related to a large literature that investigates the conditional CAPM. Fama

and MacBeth (1973) propose a two stage approach to estimate the relationship between

factor loadings and expected returns. They use rolling windows to estimate factor loadings

(a separate time-series regression for each asset) and a cross-sectional regression to estimate

risk premia at every point in time t. Ang and Chen (2007) use moving averages to estimate

conditional market beta and show that there is little evidence that conditional abnormal

returns for a book-to-market trading strategy are statistically different from zero. Lewellen

and Nagel (2006) also estimate the conditional CAPM using rolling windows of market beta

but find that the conditional CAPM is rejected. Unfortunately, simple moving average

estimates are bad approximations of conditional market beta as pointed out by Bali (2008)

and Bali and Engle (2010).

Jagannathan and Wang (1996) and Lettau and Ludvigson (2001) use conditioning vari-

ables such as credit spreads and a measure of the consumption-to-wealth ratio and test

unconditional moments implied by the conditional CAPM. They find that the conditional

CAPM fits the data well. In contrast, Lewellen and Nagel (2006) re-write the conditional

CAPM in unconditional form and argue that the covariation between conditional market

beta and the market risk premium would have to be very large to explain unconditional

abnormal returns of book-to-market and momentum portfolios; they deem such a large co-

variation as unlikely. A disadvantage of testing unconditional implications of a conditional

model is that the actual time-series of conditional market beta are not estimated. Moreover,

note that our approach is not subject to the critique of Lewellen and Nagel (2006) because we

are not arguing that the conditional CAPM is able to fit the data. In contrast, we estimate

an ICAPM and show that shocks to conditional market beta are important state variables

which carry large risk premia and are relevant for pricing assets in the cross-section.

Bollerslev et al. (1988) and Ng (1991) are the first to use multivariate GARCH to esti-

mate the conditional CAPM and find some support for their models in the data. However,

Bollerslev et al. (1988) only estimate their model for three assets (T-Bills, bonds, stocks) be-

cause their approach estimates several moments simultaneously which is a computationally

involved task. Ng (1991) estimates his model for more test assets but makes the restrictive

assumption that the correlation matrix is constant through time.
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Since the introduction of the dynamic conditional correlation (DCC) model by Engle

(2002), there is a growing literature using bivariate GARCH/DCC models to estimate the

time-series of conditional market beta for many assets (Bali, 2008; Bali et al., 2009; Bali

and Engle, 2010; Bali et al., 2016; Bali and Engle, 2016). These papers document that

the estimated conditional market beta fit the data well. A particular focus is on the result

that conditional market beta explain expected returns in the time-series and in the cross-

section. This result is opposite to the prominent finding that market beta appear unrelated to

expected returns when moving average estimates are used as proxies of conditional market

beta. Thus, moving average estimates appear to be a bad approximations of conditional

market beta.

Other research such as Harvey (1989) and Cederburg and O’Doherty (2016) assume

conditional market beta are a function of macroeconomic or financial conditioning variables.

An advantage of the multivariate GARCH approach is that we do not need to specify a

set of arbitrarily chosen conditioning variables. Moreover, there is a large literature that

argues that GARCH and DCC models are among the best econometric methods we have to

estimate conditional variances and covariances in financial data.

Finally, Armstrong et al. (2013) introduce a model with parameter uncertainty in condi-

tional market beta and show that this uncertainty implies a premium in expected returns.

In contrast, we assume that conditional market beta are perfectly observable at every point

in time t and there is no parameter uncertainty.

To our knowledge there is no research on the pricing implications of shocks to conditional

market beta. We are the first to use shocks to conditional market beta as state variables in

the ICAPM and analyze their pricing properties and relation to the well-known FFC factors.

Our paper is organized as follows. Section 2 explains the estimation of conditional mar-

ket beta and describes the data we use in our estimation. Section 3 discusses the striking

relationship between conditional market beta and firm characteristics, and explains the con-

struction of our state variables. Section 4 shows that common shocks to conditional market

beta are priced in the cross-section of stock returns and are important state variables in the

ICAPM. Section 5 concludes.
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2 Estimation of the ICAPM

The ICAPM of Merton (1973) suggests that expected excess returns of all assets at time t

satisfy the equilibrium relationship

µt = βtµm,t + γtµx,t, (1)

where µt = Et [rt+1 − rf,t] is an N × 1 vector of conditional expected excess returns of

N assets at time t with the N × 1 vector of asset returns rt+1 and the risk-free rate rf,t,

µm,t = Et [rm,t+1 − rf,t] is the market risk premium with market return rm,t+1, µx,t is a K×1

vector of risk premia of K state variables denoted by the K × 1 vector xt+1, and N × 1

vector βt and N × K matrix γt describe the conditional risk exposures of the N assets to

the market and the K state variables. The state variable vector xt+1 captures changes in

the investment opportunity set, i.e., shocks to conditional expected excess returns and the

conditional covariance matrix of the N assets. But, expected returns and the covariance

matrix are not directly observable in the data and expected returns are particularly difficult

to estimate. Moreover, it is not obvious which observable quantities the econometrician must

use as (proxies of the) state variables xt+1.

The factor loadings βt (and γt) are potentially time varying in the ICAPM. In turn,

changes in βt clearly imply shifts in the investment opportunity set, i.e., changes in βt imply

changes in expected returns and the covariance matrix of the N assets. Therefore, our idea

is to focus on the time variation in conditional market beta βt as state variables.

A growing literature has shown that conditional market beta βt is well measured using a

multivariate GARCH model (Bollerslev et al., 1988; Ng, 1991; Bali, 2008; Bali et al., 2009;

Bali and Engle, 2010; Bali et al., 2016; Engle, 2015; Bali and Engle, 2016). We build on the

results of this literature to model βt, and use unexpected changes in βt as state variables

xt+1 to quantify shifts in the investment opportunity set. For simplicity, we assume constant

risk premia µm,t and µx,t because these quantities are unobservable and difficult to estimate.

This last assumption is not innocuous and is likely to cause rejections of our model in the

data. It is nevertheless interesting to investigate whether changes in conditional market beta
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are priced and how much of the cross-sectional variation in expected stock returns can be

explained by these state variables.

To our knowledge we are the first to investigate changes in conditional market beta as

state variables. The literature has focused on the resurrection of the (conditional) CAPM, for

instance by showing that stocks with large conditional market beta earn large future average

returns, a fundamental statement which is often found to be rejected in the unconditional

CAPM.

2.1 Data

We estimate the ICAPM relation (1) using monthly returns of 10 momentum and 25 size and

book-to-market stock portfolios from January 1946 to January 2016. For the 10 momentum

portfolios stocks are sorted into deciles according to their past 12 month returns (Carhart,

1997). For the 25 size and book-to-market portfolios stocks are double sorted into size

quintiles and book equity to market equity ratio quintiles (Fama and French, 1993). All

data is publicly available on Kenneth French’s website4.

Bali (2008) shows that estimating conditional market beta using a multivariate GARCH

approach works well for monthly returns of these portfolios and conditional market beta

explain expected returns much better than unconditional market beta. Thus, it is natural

to build on these strong results and use a similar dataset to test the pricing implications

of shocks to conditional market beta. Moreover, stock portfolios are easier to handle and

less noisy than individual stocks (Bali, 2008). In addition, we use the size (SMB), book-to-

market (HML) and momentum (MOM) factors (also provided on Kenneth French’s website)

as control variables in our tests.

2.2 Estimation of Conditional Market Beta

Engle (2015) provides a formal derivation of conditional factor loadings using multivariate

GARCH and a discussion of the consistency and asymptotic properties of the estimators.

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Adopting his setting we assume the following conditional joint distribution of excess returns

and state variables:


rt+1 − rf,t
rm,t+1 − rf,t

xt+1

 ∼ N
â

µt

µm,t

Et [xt+1]

 ,

Hr,t Hr,rm,t Hr,x,t

H ′r,rm,t Hrm,t Hrm,x,t

H ′r,x,t H ′rm,x,t Hx,t



ì
.

N (µ,H) is a normal distribution with mean µ and covariance matrixH. Hr,t = Covt (rt+1 − rf,t)

is the N × N conditional covariance matrix of asset returns, Hrm,t = V art (rm,t+1 − rf,t)

is the conditional variance of the market, Hr,rm,t = Covt (rt+1 − rf,t, rm,t+1 − rf,t) is the

N × 1 vector of conditional covariances between the N assets and the market, Hr,x,t =

Covt (rt+1 − rf,t, xt+1) is the N ×K matrix of conditional covariances between the N assets

and K state variables, Hrm,x,t = Covt (rm,t+1 − rf,t, xt+1) is the 1 ×K vector of conditional

covariances between the market and K state variables, and Hx,t = Covt (xt+1) is the K ×K

conditional covariance matrix of the state variables.

Conditional on the market return and the state variables the joint distribution of the N

asset returns is

rt+1 − rf,t

∣∣∣∣∣∣∣
rm,t+1 − rf,t

xt+1

 ∼ N Äµt|rm,x , Hr|rm,x
ä

with

µr|rm,x = µt +
ï
Hr,rm,t Hr,x,t

ò Hrm,t Hrm,x,t

H ′rm,x,t Hx,t


−1 rm,t+1 − rf,t − µm,t

xt+1 − Et [xt+1]



Hr|rm,x = Hr,t −
ï
Hr,rm,t Hr,x,t

ò  Hrm,t Hrm,x,t

H ′rm,x,t Hx,t


−1 Hr,rm,t

H ′r,x,t

 .
Thus, the ICAPM factor loadings areï

βt γt

ò
=
ï
Hr,rm,t Hr,x,t

ò  Hrm,t Hrm,x,t

H ′rm,x,t Hx,t


−1

.
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If the market is the only pricing factor or if rm,t+1 − rf,t is uncorrelated with the state

variables xt+1 (i.e., Hrm,x,t = 0), then the conditional market beta βt depends only on the

conditional covariance of the asset returns with the market and the conditional variance of

the market and is independent of the covariation with the other state variables,

βt = Hr,rm,tH
−1
rm,t =

Covt (rt+1 − rf,t, rm,t+1 − rf,t)
V art (rm,t+1 − rf,t)

. (2)

In the ICAPM the market is the only pricing factor if investors do not care about shocks

to the investment opportunity set (e.g., log-utility). In our view this is a strong assumption

and we believe changes in the investment opportunity set are likely to matter for pricing.

For convenience we make the weaker assumption that the state variables xt+1 are orthogonal

to rm,t+1− rf,t. Again, according to (2) this ensures that the conditional market beta βt can

be estimated without the knowledge of the state variables. This is important for us because

we want to use unexpected shocks to βt (and orthogonalize them with respect to the market

return) as state variables xt+1, and thus, have to estimate βt before we have constructed

xt+1. Therefore, constructing state variables which are orthogonal to the market is crucial

to ensure internal consistency in our estimation approach.

We follow Bali (2008), Bali et al. (2009), Bali and Engle (2010), Bali et al. (2016), Engle

(2015) and Bali and Engle (2016) to estimate conditional market beta. We use the GARCH

specification of Engle (1982) and Bollerslev (1986) to estimate the conditional variance of the

market V art (rm,t+1 − rf,t), and the dynamic conditional correlation model (DCC) of Engle

(2002) to estimate the conditional covariance Covt (rt+1 − rf,t, rm,t+1 − rf,t). For each asset
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n ∈ {1, . . . , N} we assume:

rn,t+1 − rf,t = µn,t + σn,tεn,t+1

rm,t+1 − rf,t = µm,t + σm,tεm,t+1

σ2
n,t = V art (rn,t+1 − rf,t) = δn,0 + δn,1σ

2
n,t−1 + δn,2 (σn,t−1εn,t)

2

σ2
m,t = V art (rm,t+1 − rf,t) = δm,0 + δi,1σ

2
m,t−1 + δm,2 (σm,t−1εm,t)

2

σim,t = Covt (ri,t+1 − rf,t, rm,t+1 − rf,t) = ρim,tσi,tσm,t

ρnm,t = Corrt (rn,t+1 − rf,t, rm,t+1 − rf,t) =
qnm,t√
qnn,tqmm,t

Qt =

qnn,t qnm,t

qnm,t qmm,t



= (1− δnm,1 − δnm,2)

 1 ρ̄nm

ρ̄nm 1

+ δnm,1Qt−1 + δnm,2

 ε2n,t εn,tεm,t

εn,tεm,t ε2m,t

 ,

(3)

where ρ̄nm = Corr (rn,t+1 − rf,t, rm,t+1 − rf,t) is the unconditional correlation between as-

set i and the market, εn,t, εm,t are i.i.d. standard normally distributed variables, we set

µn,tandµm,t equal to the unconditional means E [rn,t − rf,t] and E [rm,t − rf,t], and we esti-

mate the δ coefficients using maximum likelihood. We estimate pairwise covariances between

each individual asset n ∈ {1, . . . , N} and the market, which keeps the estimation feasible

even for a large set of assets. We do not impose any restrictions on nor do we estimate the

conditional covariance matrix of the N assets or the covariance with the state variables xt+1.

As suggested by Engle (2002), for each of the three processes σ2
n,t, σ

2
m,t and Qt we maximize

a separate likelihood function to estimate the corresponding set of δ coefficients.5

For our test assets (10 momentum, 25 size and book-to-market), we find that conditional

market beta substantially vary from month to month. On average the time-series standard

deviation of the conditional market beta is 0.16, ranging from 0.08 to 0.35 across the test

assets. The conditional market beta on average range between 0.23 and 3.35. Figure 1

shows the distribution of monthly conditional market beta. The top two histograms display

the results for the 10 momentum, and the bottom two for the 25 size and book-to-market

5We refer to Engle (2002) for details about the maximum likelihood estimation.
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Distribution of Monthly Conditional Market Beta

Conditional Market Beta

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

700

800

Conditional Market Beta

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

700

Conditional Market Beta

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

1200

Conditional Market Beta

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

600

700

Figure 1: Histograms of monthly conditional market beta of 10 momentum (top row) and 25 size
and book-to-market portfolios (bottom row). Left: histogram of all beta across time and portfolios.
Right: one histogram of beta across time per portfolio.
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portfolios. The histograms on the left pool conditional beta across time and portfolios, while

the figures on the right contain one histogram of beta across time for each portfolio.

We further observe that conditional market beta are persistent through time. The

monthly autocorrelation coefficient in conditional beta is close to 1. The average auto-

correlation is 0.93, the smallest value across all portfolios is 0.85 and the largest is 0.98.

Changes in monthly conditional market beta are not autocorrelated,

dβt = βt − βt−1.

Thus, we use monthly changes dβt as state variables to proxy for unexpected changes in the

investment opportunity set.

3 Size, Book-to-Market, Momentum and Changes in

Conditional Market Beta

Before we analyze the pricing implications of changes in conditional market beta dβt, we

investigate whether there is any relationship between dβt and firm characteristics. Size,

book-to-market and momentum sorted portfolios are prominent factors in empirical asset

pricing models. The economics of these factors is, however, not well understood and it is not

clear to what extend they are state variables in the sense of the ICAPM.6 We show that the

three factors are closely related to changes in conditional market beta. Given that changes

in conditional market beta affect the investment opportunity set, we view this as evidence

that size, book-to-market and momentum are indeed proxies for important state variables.

6But, for instance Fama and French (1993, 1995, 1996), Liew and Vassalou (2000) and Vassalou (2003)
show that size and book-to-market factors are related to the real economy such as news about future GDP
growth, and thus, are state variables.
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Table 1: Correlation of Conditional Market Beta of 10 Momentum Portfolios (1946–2016)

Low 2 3 4 5 6 7 8 9 High
Low 1.000 0.637 0.448 0.384 0.298 -0.072 -0.272 -0.366 -0.343 -0.250
2 0.637 1.000 0.709 0.599 0.466 -0.011 -0.291 -0.481 -0.588 -0.507
3 0.448 0.709 1.000 0.584 0.487 0.157 -0.100 -0.435 -0.567 -0.533
4 0.384 0.599 0.584 1.000 0.482 0.192 -0.057 -0.282 -0.458 -0.511
5 0.298 0.466 0.487 0.482 1.000 0.186 -0.050 -0.250 -0.398 -0.369
6 -0.072 -0.011 0.157 0.192 0.186 1.000 0.345 0.068 0.049 -0.187
7 -0.272 -0.291 -0.100 -0.057 -0.050 0.345 1.000 0.355 0.375 -0.050
8 -0.366 -0.481 -0.435 -0.282 -0.250 0.068 0.355 1.000 0.539 0.380
9 -0.343 -0.588 -0.567 -0.458 -0.398 0.049 0.375 0.539 1.000 0.479
High -0.250 -0.507 -0.533 -0.511 -0.369 -0.187 -0.050 0.380 0.479 1.000

Notes: Correlation matrix of changes in conditional market beta of 10 momentum portfolios.
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Table 2: Correlation of Changes in Conditional Market Beta of 25 Size and Book-to-Market (B/M) Portfolios
(1946–2016)

Size Small 2
B/M Low 2 3 4 High Low 2 3 4 High

S
m

al
l

Low 1.000 0.798 0.737 0.653 0.603 0.722 0.656 0.607 0.505 0.505
2 0.798 1.000 0.829 0.774 0.715 0.722 0.765 0.722 0.640 0.624
3 0.737 0.829 1.000 0.880 0.803 0.664 0.784 0.794 0.768 0.710
4 0.653 0.774 0.880 1.000 0.839 0.599 0.802 0.791 0.822 0.748
High 0.603 0.715 0.803 0.839 1.000 0.498 0.696 0.761 0.773 0.794

2

Low 0.722 0.722 0.664 0.599 0.498 1.000 0.739 0.641 0.471 0.417
2 0.656 0.765 0.784 0.802 0.696 0.739 1.000 0.786 0.735 0.632
3 0.607 0.722 0.794 0.791 0.761 0.641 0.786 1.000 0.775 0.749
4 0.505 0.640 0.768 0.822 0.773 0.471 0.735 0.775 1.000 0.766
High 0.505 0.624 0.710 0.748 0.794 0.417 0.632 0.749 0.766 1.000

3

Low 0.610 0.601 0.487 0.408 0.342 0.771 0.574 0.461 0.301 0.298
2 0.504 0.591 0.623 0.582 0.550 0.605 0.667 0.714 0.613 0.565
3 0.390 0.484 0.553 0.531 0.580 0.361 0.546 0.700 0.638 0.637
4 0.370 0.493 0.558 0.566 0.635 0.323 0.537 0.662 0.716 0.711
High 0.383 0.509 0.588 0.596 0.664 0.345 0.490 0.671 0.663 0.753

4

Low 0.422 0.397 0.206 0.118 0.103 0.579 0.317 0.202 0.046 0.062
2 0.277 0.329 0.358 0.332 0.320 0.382 0.432 0.424 0.411 0.326
3 0.187 0.292 0.355 0.340 0.402 0.187 0.343 0.461 0.482 0.461
4 0.273 0.367 0.460 0.519 0.533 0.219 0.460 0.531 0.658 0.601
High 0.233 0.354 0.432 0.464 0.530 0.174 0.372 0.478 0.561 0.641

B
ig

Low -0.302 -0.370 -0.428 -0.420 -0.477 -0.196 -0.329 -0.431 -0.489 -0.546
2 -0.307 -0.333 -0.245 -0.191 -0.165 -0.285 -0.214 -0.220 -0.136 -0.141
3 -0.180 -0.162 -0.054 0.036 0.053 -0.252 -0.069 -0.038 0.132 0.064
4 -0.130 -0.049 0.032 0.094 0.145 -0.219 -0.050 0.057 0.222 0.258
High 0.032 0.090 0.166 0.235 0.248 -0.032 0.150 0.193 0.283 0.344

continue on next page
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Table 2: continued from previous page

Size 3 4
B/M Low 2 3 4 High Low 2 3 4 High

S
m

al
l

Low 0.610 0.504 0.390 0.370 0.383 0.422 0.277 0.187 0.273 0.233
2 0.601 0.591 0.484 0.493 0.509 0.397 0.329 0.292 0.367 0.354
3 0.487 0.623 0.553 0.558 0.588 0.206 0.358 0.355 0.460 0.432
4 0.408 0.582 0.531 0.566 0.596 0.118 0.332 0.340 0.519 0.464
High 0.342 0.550 0.580 0.635 0.664 0.103 0.320 0.402 0.533 0.530

2

Low 0.771 0.605 0.361 0.323 0.345 0.579 0.382 0.187 0.219 0.174
2 0.574 0.667 0.546 0.537 0.490 0.317 0.432 0.343 0.460 0.372
3 0.461 0.714 0.700 0.662 0.671 0.202 0.424 0.461 0.531 0.478
4 0.301 0.613 0.638 0.716 0.663 0.046 0.411 0.482 0.658 0.561
High 0.298 0.565 0.637 0.711 0.753 0.062 0.326 0.461 0.601 0.641

3

Low 1.000 0.563 0.305 0.210 0.206 0.705 0.316 0.163 0.076 0.048
2 0.563 1.000 0.644 0.571 0.498 0.334 0.571 0.498 0.419 0.387
3 0.305 0.644 1.000 0.704 0.632 0.128 0.550 0.624 0.557 0.485
4 0.210 0.571 0.704 1.000 0.714 0.057 0.425 0.585 0.688 0.634
High 0.206 0.498 0.632 0.714 1.000 0.014 0.343 0.519 0.671 0.698

4

Low 0.705 0.334 0.128 0.057 0.014 1.000 0.281 0.082 -0.056 -0.065
2 0.316 0.571 0.550 0.425 0.343 0.281 1.000 0.554 0.335 0.257
3 0.163 0.498 0.624 0.585 0.519 0.082 0.554 1.000 0.562 0.479
4 0.076 0.419 0.557 0.688 0.671 -0.056 0.335 0.562 1.000 0.637
High 0.048 0.387 0.485 0.634 0.698 -0.065 0.257 0.479 0.637 1.000

B
ig

Low -0.101 -0.397 -0.474 -0.535 -0.478 0.035 -0.363 -0.460 -0.413 -0.437
2 -0.309 -0.141 -0.107 -0.112 -0.190 -0.259 0.066 0.012 -0.069 -0.079
3 -0.405 -0.048 0.076 0.142 0.043 -0.373 0.165 0.190 0.182 0.129
4 -0.291 0.003 0.212 0.333 0.314 -0.324 0.081 0.333 0.400 0.402
High -0.113 0.144 0.205 0.415 0.409 -0.202 0.102 0.271 0.417 0.518

continue on next page
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Table 2: continued from previous page

Size Big
B/M Low 2 3 4 High

S
m

al
l

Low -0.302 -0.307 -0.180 -0.130 0.032
2 -0.370 -0.333 -0.162 -0.049 0.090
3 -0.428 -0.245 -0.054 0.032 0.166
4 -0.420 -0.191 0.036 0.094 0.235
High -0.477 -0.165 0.053 0.145 0.248

2

Low -0.196 -0.285 -0.252 -0.219 -0.032
2 -0.329 -0.214 -0.069 -0.050 0.150
3 -0.431 -0.220 -0.038 0.057 0.193
4 -0.489 -0.136 0.132 0.222 0.283
High -0.546 -0.141 0.064 0.258 0.344

3

Low -0.101 -0.309 -0.405 -0.291 -0.113
2 -0.397 -0.141 -0.048 0.003 0.144
3 -0.474 -0.107 0.076 0.212 0.205
4 -0.535 -0.112 0.142 0.333 0.415
High -0.478 -0.190 0.043 0.314 0.409

4

Low 0.035 -0.259 -0.373 -0.324 -0.202
2 -0.363 0.066 0.165 0.081 0.102
3 -0.460 0.012 0.190 0.333 0.271
4 -0.413 -0.069 0.182 0.400 0.417
High -0.437 -0.079 0.129 0.402 0.518

B
ig

Low 1.000 -0.094 -0.366 -0.417 -0.335
2 -0.094 1.000 0.282 0.145 0.071
3 -0.366 0.282 1.000 0.369 0.106
4 -0.417 0.145 0.369 1.000 0.427
High -0.335 0.071 0.106 0.427 1.000

Notes: Correlation matrix of changes in conditional market beta of 25 size and book-to-market portfolios.

15



3.1 Correlations of Changes in Conditional Market Beta across

Assets

Table 1 reports correlations between the time-series of changes in conditional market beta dβt

for the 10 momentum portfolios, sorted from the portfolio with the lowest past performance

(top, left) to the one with the highest (bottom, right). We observe a striking pattern:

the correlation between dβt is positive and large for portfolios with similar past 12 month

performance and small or negative for portfolios with large differences in past performance.

Thus, sorting stocks according to their past performance appears to be similar to dividing

them into groups such that conditional market beta strongly move together within each

group.

Figure 2 also illustrates this finding. The top graph plots conditional market beta βt

of the first (solid black line) and second (dashed red line) momentum decile portfolios.

They strongly co-move. Indeed, according to table 1 the correlation between dβt of the two

portfolios is positive and 63.7%. The bottom graph plots βt of the first (solid black line) and

the tenth (dashed red line) momentum decile portfolios. These two portfolios do not move

together and often move in opposite directions. In accordance with this visual assessment,

the correlation between the two portfolios’ dβt is negative and -25%.

Table 2 shows a similar pattern in the correlation matrix of dβt for the 25 size and book-

to-market portfolios. Controlling for size, the correlation between dβt of portfolios with a

similar book-to-market ratio is large and monotonically decreasing in the difference in book-

to-market ratios. Moreover, controlling for the book-to-market ratio, portfolios with a similar

size feature a large correlation between their dβt and the correlation is again monotonically

decreasing in the difference in size. Hence, sorting stocks according to size or book-to-market

ratio appears to be again similar to dividing them into groups such that conditional market

beta strongly co-move within each group.

In summary, we document a striking relationship between size, book-to-market and mo-

mentum firm characteristics and changes in conditional market beta. We find that condi-

tional market beta of stocks with similar size, book-to-market ratio and past performance

strongly move together. Moreover, the correlation between changes in conditional market
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Time-Series of Monthly Conditional Market Beta
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Figure 2: Top: monthly conditional market beta of first (solid black line) and second (dashed red
line) momentum decile portfolios. Bottom: monthly conditional market beta of first (solid black
line) and tenth (dashed red line) momentum decile portfolios.
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beta is decreasing in the difference in size, book-to-market ratio and past performance of the

corresponding stocks.

3.2 Common Shocks to Conditional Market Beta

As explained in the beginning of section 2, the idea of our paper is to use shocks to conditional

market beta dβt as state variables xt+1 because changes in conditional market beta imply

shifts in the investment opportunity set. We use principal component analysis to extract

the D most important factors PCi,t ∀i ∈ {1, . . . , D}, D ≤ N , of the time-series dβt of our N

test assets.7 We use Horn’s parallel analysis to determine the number of important factors

D. Horn’s Parallel analysis uses Monte Carlo simulations to determine significance levels for

eigenvalues to decide whether a principal component captures any common variation. It is

natural to limit our attention to only some few factors, which explain the common variation

in dβt. First, it is impractical to use changes in conditional market beta of every asset (i.e.,

the entire N -dimensional vector dβt) as state variables. Second, factors which explain the

common variation are arguably the most important ones to investors. That is, investors

are more likely to care about and try to hedge shocks that affect conditional market beta of

many stocks rather than a shock, which only affects a single stock. Thus, the most important

principal components are the most likely to affect hedging demands and to constitute pricing

factors in the ICAPM.

Tables 3, 4 and 5 report results for the principal component analysis of the time-series

of changes in conditional market beta dβt for 10 momentum, 25 size and book-to-market,

and all 35 portfolios combined. Panel A lists the percentage of common variation explained

in dβt by the first five principal components PCi ∀i ∈ {1, . . . , 5}, and it indicates whether

a factor is significant (i.e., explains some common variation according to Horn’s parallel

analysis). We do not report results for principal components beyond the fifth component

because the common variation in dβt explained by these higher order components is very

small. For the 10 momentum portfolios (table 3), the first factor captures 63.12% of the

common variation in dβt and is the only significant principal component. None of the other

7PCt =
[
PC1,t . . . PCN,t

]
= dβ′tW where Cov (dβt)W = WΛ with Cov (dβt) the unconditional N×N

covariance matrix of dβt, W the N ×N matrix of eigenvectors, and Λ the diagonal matrix of N eigenvalues.
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Table 3: Principal Components of 10 Momentum Portfolios (1946–2016)

PC1 PC2 PC3 PC4 PC5

Panel A: Principal Components

% Var explained 63.12 16.41 5.56 4.16 3.45
Common Variation Yes No No No No

Panel B: Returns of Factor Mimicking Portfolios

Mean 12.68 2.68 2.30 0.66 0.44
Volatility 17.94 6.41 5.10 2.66 2.52
Sharpe Ratio 0.71 0.42 0.45 0.25 0.17

Corr(RPCi,MKT ) -0.01 -0.32 -0.18 0.52 -0.03
Corr(RPCi, SMB) -0.03 -0.34 0.08 0.43 -0.20
Corr(RPCi, HML) -0.18 0.13 -0.14 -0.29 0.09
Corr(RPCi,MOM) 0.91 0.34 0.28 -0.15 0.46

Panel C: CAPM

α 12.81∗∗∗ 3.73∗∗∗ 2.77∗∗∗ -0.03 0.47∗

(6.51) (5.27) (4.42) (-0.13) (1.67)
MKT -0.02 -0.14∗∗∗ -0.06∗∗∗ 0.09∗∗∗ -0.00

(-0.20) (-7.19) (-3.73) (12.27) (-0.47)

Panel D: Fama-French 4-Factor Model

α 0.99 1.99∗∗∗ 2.19∗∗∗ 0.40∗ -0.64∗∗∗

(1.14) (2.64) (3.03) (1.65) (-2.65)
MKT 0.11∗∗∗ -0.09∗∗∗ -0.07∗∗∗ 0.07∗∗∗ 0.02∗∗∗

(4.65) (-5.13) (-4.44) (10.04) (2.78)
SMB -0.03 -0.17∗∗∗ 0.06∗∗ 0.08∗∗∗ -0.05∗∗∗

(-0.58) (-6.10) (2.52) (4.94) (-2.65)
HML -0.03 0.06 -0.07∗∗∗ -0.05∗∗∗ 0.04∗∗∗

(-0.59) (1.81) (-2.61) (-3.65) (3.69)
MOM 1.22∗∗∗ 0.15∗∗∗ 0.09∗∗∗ -0.02∗∗∗ 0.09∗∗∗

(39.08) (6.75) (4.20) (-3.01) (10.54)

Notes: The first panel (“Principal Components”) reports the percentage of common variation

explained in dβt by each of the first 5 principal components and indicates whether PCi is

capturing common variation according to Horn’s parallel analysis. The other three panels

provide statistics on returns of portfolio RPCi, which is constructed to mimic PCi. Test

assets are 10 momentum portfolios. Newey and West (1987) robust t-statistics are reported in

parentheses below coefficient estimates. Significance at the 1%, 5% or 10% level are indicated

by ∗,∗∗ or ∗∗∗.
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Table 4: Principal Components of 25 Size and Book-to-Market Portfolios (1946–
2016)

PC1 PC2 PC3 PC4 PC5

Panel A: Principal Components

% Var explained 50.98 16.17 5.07 3.69 3.15
Common Variation Yes Yes No No No

Panel B: Returns of Factor Mimicking Portfolios

Mean 2.71 4.35 1.78 0.75 2.06
Volatility 22.95 12.57 5.17 4.35 4.86
Sharpe Ratio 0.12 0.35 0.34 0.17 0.42

Corr(RPCi,MKT ) 0.07 0.03 0.02 0.08 0.00
Corr(RPCi, SMB) -0.56 -0.45 -0.37 0.52 0.19
Corr(RPCi, HML) 0.16 0.52 0.25 0.05 0.20
Corr(RPCi,MOM) -0.03 -0.18 -0.01 -0.00 -0.01

Panel C: CAPM

α 1.85 4.17∗∗∗ 1.72∗∗∗ 0.58 2.06∗∗∗

(0.70) (2.73) (3.05) (1.07) (3.62)
MKT 0.11 0.02 0.01 0.02 0.00

(1.53) (0.65) (0.63) (1.48) (0.01)

Panel D: Fama-French 4-Factor Model

α 1.33 1.89 1.01∗ -0.03 1.20∗∗

(0.59) (1.54) (1.74) (-0.07) (2.17)
MKT 0.40∗∗∗ 0.20∗∗∗ 0.06∗∗∗ -0.01 -0.00

(5.99) (5.75) (4.97) (-0.75) (-0.07)
SMB -1.43∗∗∗ -0.54∗∗∗ -0.19∗∗∗ 0.25∗∗∗ 0.12∗∗∗

(-8.84) (-4.07) (-6.25) (7.21) (5.93)
HML 0.24 0.64∗∗∗ 0.12∗∗∗ 0.07∗∗ 0.13∗∗∗

(1.55) (7.53) (4.07) (2.10) (6.31)
MOM -0.02 -0.09 0.01 0.01 0.01

(-0.20) (-1.38) (0.54) (0.57) (0.75)

Notes: The first panel (“Principal Components”) reports the percentage of common variation

explained in dβt by each of the first 5 principal components and indicates whether PCi is

capturing common variation according to Horn’s parallel analysis. The other three panels

provide statistics on returns of portfolio RPCi, which is constructed to mimic PCi. Test

assets are 25 size and book-to-market portfolios. Newey and West (1987) robust t-statistics

are reported in parentheses below coefficient estimates. Significance at the 1%, 5% or 10%

level are indicated by ∗,∗∗ or ∗∗∗.
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Table 5: Principal Components of 10 Momentum and 25 Size and Book-to-
Market Portfolios (1946–2016)

PC1 PC2 PC3 PC4 PC5

Panel A: Principal Components

% Var explained 34.21 24.42 9.42 6.13 2.67
Common Variation Yes Yes Yes Yes No

Panel B: Returns of Factor Mimicking Portfolios

Mean 16.71 0.23 5.38 0.08 3.63
Volatility 26.21 24.97 13.88 9.42 7.07
Sharpe Ratio 0.64 0.01 0.39 0.01 0.51

Corr(RPCi,MKT ) 0.04 -0.02 -0.08 -0.27 -0.09
Corr(RPCi, SMB) -0.30 0.46 -0.38 0.11 -0.32
Corr(RPCi, HML) -0.06 -0.27 0.42 -0.26 0.04
Corr(RPCi,MOM) 0.69 0.14 -0.06 0.17 0.19

Panel C: CAPM

α 16.15∗∗∗ 0.52 5.94∗∗∗ 1.37 3.97∗∗∗

(5.54) (0.17) (3.81) (1.15) (4.39)
MKT 0.08 -0.04 -0.07∗ -0.17∗∗∗ -0.04

(0.70) (-0.49) (-1.81) (-5.17) (-1.62)

Panel D: Fama-French 4-Factor Model

α 2.32 1.00 3.22∗∗ 2.25∗∗ 3.11∗∗∗

(1.04) (0.35) (2.10) (1.98) (3.20)
MKT 0.38∗∗∗ -0.31∗∗∗ 0.09∗∗ -0.23∗∗∗ 0.01

(7.44) (-3.71) (2.10) (-7.57) (0.24)
SMB -0.87∗∗∗ 1.21∗∗∗ -0.46∗∗∗ 0.15 -0.23∗∗∗

(-7.06) (5.38) (-3.46) (1.89) (-4.07)
HML 0.12 -0.53∗∗∗ 0.56∗∗∗ -0.30∗∗∗ 0.01

(1.16) (-3.10) (6.87) (-5.06) (0.11)
MOM 1.38∗∗∗ 0.19 -0.00 0.06 0.09∗∗

(17.85) (1.61) (-0.00) (1.45) (2.02)

Notes: The first panel (“Principal Components”) reports the percentage of common variation

explained in dβt by each of the first 5 principal components and indicates whether PCi is

capturing common variation according to Horn’s parallel analysis. The other three panels

provide statistics on returns of portfolio RPCi, which is constructed to mimic PCi. Test

assets are 10 momentum and 25 size and book-to-market portfolios. Newey and West (1987)

robust t-statistics are reported in parentheses below coefficient estimates. Significance at the

1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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components appears to capture any common variation in dβt. In the case of the 25 size and

book-to-market portfolios (table 4), we have two significant principal components, explaining

50.98% and 16.17% of the common variation in dβt. Finally, for all 35 portfolios combined

(table 5), we have four significant factors, explaining 34.21%, 24.42%, 9.42% and 6.13% of

the common variation in dβt.

Next, we construct factor mimicking portfolios of the principal components, i.e., tradable

strategies which can be used to hedge the shocks to conditional market beta which are

described by the principal components. We regress PCi,t on the excess returns rt − rf,t of

all N assets (time-series regression) to determine a portfolio, whose returns replicate the

principal component,

PCi,t = ci + (rt − rf,t)′ θi + ϑi,t,

where ϑi,t is an error term and the constant ci and the N × 1 portfolio weights vector θi are

estimated using ordinary least squares. This approach assumes that the factor mimicking

portfolio θi is a static strategy, i.e., portfolio weights θi are constant through time t. The

excess return of the factor mimicking portfolio is

RPCi,t = (rt − rf,t)′ θi. (4)

Since the factor mimicking portfolio RPCi,t is constructed to replicate the principal compo-

nent PCi,t, it can be used to hedge shocks to conditional market beta dβt. In the ICAPM

framework these factor mimicking portfolios are the strategies that constitute hedging de-

mand. The expected return of RPCi,t is thus the risk compensation for exposure to condi-

tional market beta shocks.

Panel B in tables 3, 4 and 5, report the annualized mean excess return, volatility and

Sharpe ratio of the factor mimicking portfolios. It further reports the correlation of RPCi,t

with the market (MKT , which is the same as rm,t − rf,t), size (SMB), book-to-market

(HML) and momentum (MOM) factors. Panel C and D report CAPM and Fama-French

4-factor (FF4) abnormal returns (α) and factor loadings. For the CAPM we regress monthly
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factor mimicking portfolio returns RPCi,t on a constant and the market,

RPCi,t = αi +MKTtψi + εi,t,

where εi,t is an error term and abnormal return αi and factor loading ψi are estimated using

ordinary least squares. Notice that we are estimating an unconditional CAPM here. We

denote the unconditional market beta by ψi to mitigate potential confusion with conditional

market beta βt of the N original test assets. For the FF4 model we regress monthly returns

RPCi,t on a constant, the market, size, book-to-market and momentum factors,

RPCi,t = αi +MKTtψMKT,i + SMBtψSMB,i +HMLtψHML,i +MOMtψMOM,i + εi,t,

where εi,t is an error term and abnormal return αi and factor loadings ψj,i ∀j ∈ {MKT, SMB,

HML,MOM} are estimated using ordinary least squares. Again, we assume an uncondi-

tional FF4 model.

For the set of 10 momentum portfolios (table 3), the factor mimicking portfolio of the

first principal component RPC1 earns an economically large annual mean excess return of

12.68% with a volatility of 17.94%. The Sharpe ratio is 0.71. Interestingly, it has a high

correlation of 91% with the momentum factor. It does not correlate much with the MKT ,

SMB or HML factors. RPC1 earns a large and statistically significant abnormal return in

the CAPM and does not load on MKT . However, there is no abnormal return in the FF4

model because RPC1 strongly loads on MOM . RPC1 loads slightly positively on MKT

but appears to be orthogonal to SMB and HML in the FF4 model. Remember that the

first principal component captures all common shocks to conditional market beta across

the 10 momentum portfolios. Thus, the major source of risk in conditional market beta is

priced and compensated by a large annual mean return. Moreover, it appears that the risk

in conditional market beta is to a large extend captured by the momentum factor. Thus,

we argue that the momentum factor is a state variable in the ICAPM because it proxies for

shocks to conditional market beta which, in turn, imply shocks to the investment opportunity

set.
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Although the second and third principal components PC2 and PC3 for the set of 10

momentum portfolios are not significant according to Horn’s parallel analysis, their factor

mimicking portfolios RPC2 and RPC3 earn large returns. The annual mean excess returns

are 2.68% and 2.3% with volatilities of 6.41% and 5.1% and Sharpe ratios of 0.42 and 0.45.

They also earn large and significant abnormal returns in the CAPM (3.73% and 2.77%) and

the FF4 model (1.99% and 2.19%). RPC2 is negatively related to MKT and SMB and

positively to MOM . It is hardly related to HML. RPC3 is negatively related to MKT and

HML and positively to MOM . It is weakly positively related to SMB. The fourth and

fifth principal components neither capture any common shocks to conditional market beta

nor do they earn economically or statistically significant returns.

For the 25 size and book-to-market portfolios (table 4), the first two principal components,

which capture all common variation in the changes in conditional market beta, appear to be

strongly related to SMB and HML. RPC1 has an annual mean excess return of 2.71%, a

volatility of 22.95% and a Sharpe ratio of only 0.12. It does not earn a statistically significant

abnormal return according to either the CAPM or the FF4 model. The correlation with

SMB is significant and -56%. RPC1 is slightly positively exposed to MKT and appears

orthogonal to HML and MOM . In contrast, RPC2 earns an economically large annual

mean excess return of 4.35% with a volatility of 12.57% and a Sharpe ratio of 0.35. It earns

a statistically significant abnormal return of 4.17% according to the CAPM but the abnormal

return is insignificant in the FF4 model. RPC2 is negatively exposed to SMB, positively

to HML and slightly positively loading on MKT . It appears orthogonal to MOM . We

further find that RPC3, RPC4 and RPC5 are related to SMB and HML but not MOM .

RPC3 and RPC5 earn statistically significant abnormal returns in the CAPM and in the

FF4 model. RPC4 does not earn a significant abnormal returns either in the CAPM or FF4

model. Overall, we conclude that common shocks to conditional market beta are priced and

to a large extend captured by SMB and HML. Again, this leads us to the conclusion that

SMB and HML can be viewed as state variables in the ICAPM because they are proxies

for shocks to conditional market beta, which affect the investment opportunity set.

Finally, we consider the set of 35 momentum, size and book-to-market portfolios com-

bined (table 5). The factor mimicking portfolios of the first, third and fifth principal compo-
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nents earn economically large annual mean excess returns of 16.71%, 5.38% and 3.63% with

volatilities of 26/21%, 13.88% and 7.07% and Sharpe ratios of 0.64, 0.39 and 0.51. They

all earn statistically significant abnormal returns in the CAPM. However, RPC1 does not

earn a significant abnormal return in the FF4 model while RPC3 and RPC5 do. RPC2

and RPC4 earn economically and statistically insignificant raw returns. However, RPC4

has an economically and statistically significant abnormal return after controlling for MKT

and HML. RPC1 strongly loads on MOM . RPC2 and RPC3 have strong exposure to

SMB and HML. RPC4 loads significantly on HML and RPC5 on SMB. Overall, these

results confirm our conclusion that common shocks to conditional market beta carry large

risk premia. Moreover, SMB, HML and MOM appear to be good proxies for common

shocks to conditional market beta, and thus, constitute suitable state variables in the sense

of the ICAPM.

4 Cross-Sectional Pricing Implications of Shocks to Con-

ditional Market Beta

We further use cross-sectional tests to show that changes in conditional market beta are

important state variables in the ICAPM. In particular, we show that the principal compo-

nents, which capture the common variation in dβt, are compensated by economically large

and statistically significant risk premia in the cross-section of stock returns.

We estimate models with pricing factor combinations of the factor mimicking portfolio

returns RPCi in (4) and the FF4 factors MKT , SMB, HML and MOM . We use Fama

and MacBeth (1973) regressions to estimate implied risk premia of the factors. To take

into account the fact that the state variables xt+1 have to be orthogonal to the market

excess return rm,t+1− rf,t, so that expression (2) can be used for the first stage estimation of

conditional market beta, we define the orthogonal component of each test asset n’s return

rn,t as

r̃n,t+1 = rn,t+1 − βn,t (rm,t+1 − rf,t) ∀n ∈ {1, . . . , N}. (5)
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We then use r̃n,t+1 instead of rn,t+1 in the Fama and MacBeth (1973) time-series regres-

sions to estimate the factor loadings of each test asset n on the pricing factors RPCi, SMB,

HML and MOM ,

r̃n,t+1 − rf,t = αn +
D∑
i=1

RPCi,tγRPCi,n + SMBtγSMB,n

+HMLtγHML,n +MOMtγMOM,n + εn,t ∀n ∈ {1, . . . , N},
(6)

where αn and γj,n ∀j ∈ {RPCi, SMB,HML,MOM} are estimated using ordinary least

squares. Notice that we assume that factor loadings γj,n are constant through time, except

for market beta βn,t, which are time-varying. In contrast, γt in the ICAPM relation (1)

(which corresponds to γj,n ∀j ∈ {RPCi, SMB,HML,MOM}) is potentially time-varying.

The Fama and MacBeth (1973) cross-sectional regressions for every month t are then,

rn,t − rf,t = βn,tλMKT,t +
D∑
i=1

γRPCi,nλRPCi,t + γSMB,nλSMB,t

+ γHML,nλHML,t + γMOM,nλMOM,t + α̃n,t ∀t ∈ {1, . . . , T},
(7)

where the error term α̃n,t is the abnormal return of asset n in month t, and the month t risk

premia λj,t ∀j ∈ {MKT,RPCi, SMB,HML,MOM} are estimated using ordinary least

squares. Following Fama and MacBeth (1973) we then take time-series average of the risk

premia estimates

λ̂j =
1

T

T∑
t=1

λj,t ∀j ∈ {MKT,RPCi, SMB,HML,MOM} (8)

to estimate unconditional risk premia λ̂j and the time-series sample variances

σ2
λj

=
1

T − 1

T∑
t=1

Ä
λj,t − λ̂j

ä
∀j ∈ {MKT,RPCi, SMB,HML,MOM}

for inference. The risk premia λ̂MKT,t corresponds to µm,t and λ̂j,t ∀j ∈ {RPCi, SMB,HML,

MOM} to µx,t in the ICAPM relation (1). Again, we assume in our estimation that risk

premia are constant through time while the ICAPM relation (1) allows for time-variations.
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Table 6: Fama-MacBeth Cross-Sectional Regressions of 10 Momentum Portfolios
(1946-2016)

(1) (2) (3) (4) (5)

MKT 6.68∗∗∗ 6.93∗∗∗ 7.46∗∗ 6.86∗∗∗ 5.95
(3.68) (3.84) (3.88) (3.77) (2.05)

RPC1 14.77∗∗∗ 15.53∗∗∗ 15.28∗∗∗ 15.76∗∗

(7.48) (6.28) (6.75) (5.54)
RPC2 3.46∗∗∗ 5.34∗∗

(3.89) (3.77)
RPC3 2.07∗∗ 2.94∗∗

(3.20) (4.10)
SMB -2.36 0.47

(-0.47) (0.07)
HML 8.09 26.97

(0.61) (0.82)
MOM 8.59∗∗∗ 10.25∗∗

(4.26) (4.39)

R2 2.06 27.52 71.17 53.36 83.42

χ2-statistic 68.76∗∗∗ 50.76∗∗∗ 32.88∗∗∗ 44.92∗∗∗ 15.43∗

(p-value) (0.000) (0.000) (0.014) (0.000) (7.984)

Notes: Fama and MacBeth (1973) cross-sectional estimation of risk premia λ̂j ∀j ∈
{MKT,RPCi, SMB,HML,MOM} according to equations (5), (6), (7) and (8). Column

(1) estimates the CCAPM (only MKT factor), (2) ICAPM with MKT and RPC1 factors,

(3) model in (2) and controlling for SMB, HML, MOM factors, (4) model in (2) and RPC2,

RPC3 factors, (5) model in (4) and controlling for SMB, HML, MOM factors. R2 is the cross-

section regression fit. χ2-statistic is the joint test of
∑T
t=1

α̂n,t

T = 0 for all assets n ∈ {1, . . . , N}.
The p-value (in percentage points) of the χ2-statistic is parentheses. Test assets are 10 momen-

tum portfolios. Newey and West (1987) robust t-statistics are reported in parentheses below

coefficient estimates. Significance at the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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Table 7: Fama-MacBeth Cross-Sectional Regressions of 25 Size and Book-to-
Market Portfolios (1946-2016)

(1) (2) (3) (4) (5)

MKT 8.38∗∗∗ 8.42∗∗∗ 7.60∗∗∗ 8.51∗∗∗ 7.62∗∗∗

(4.38) (4.41) (4.28) (4.45) (4.29)
RPC1 10.48∗∗ 5.85∗

(2.63) (1.75)
RPC2 6.75∗∗∗ 6.54∗∗∗ 7.98∗∗∗ 6.98∗∗∗

(2.84) (3.62) (3.50) (4.12)
RPC3 1.91∗∗ 2.45∗∗∗

(2.13) (3.31)
RPC5 2.23∗∗∗ 2.53∗∗∗

(3.51) (3.91)
SMB 0.03 0.02

(0.02) (0.02)
HML 7.48∗∗∗ 7.25∗∗∗

(5.65) (5.43)
MOM 36.24∗∗∗ 32.74∗∗∗

(5.47) (4.68)

R2 6.41 22.86 56.29 28.18 60.33

χ2-statistic 108.61∗∗∗ 110.55∗∗∗ 75.51∗∗∗ 102.22∗∗∗ 69.43∗∗∗

(p-value) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: Fama and MacBeth (1973) cross-sectional estimation of risk premia λ̂j ∀j ∈
{MKT,RPCi, SMB,HML,MOM} according to equations (5), (6), (7) and (8). Column

(1) estimates the CCAPM (only MKT factor), (2) ICAPM with MKT , RPC1 and RPC2

factors, (3) model in (2) and controlling for SMB, HML, MOM factors, (4) model in (2)

and RPC3 factor, (5) model in (4) and controlling for SMB, HML, MOM factors. R2 is

the cross-section regression fit. χ2-statistic is the joint test of
∑T
t=1

α̂n,t

T = 0 for all assets

n ∈ {1, . . . , N}. The p-value (in percentage points) of the χ2-statistic is parentheses. Test

assets are 25 size and book-to-market portfolios. Newey and West (1987) robust t-statistics are

reported in parentheses below coefficient estimates. Significance at the 1%, 5% or 10% level

are indicated by ∗,∗∗ or ∗∗∗.
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Table 8: Fama-MacBeth Cross-Sectional Regressions of 10 Momentum and 25
Size and Book-to-Market Portfolios (1946-2016)

(1) (2) (3) (4) (5)

MKT 7.88∗∗∗ 8.48∗∗∗ 7.42∗∗∗ 8.51∗∗∗ 7.51∗∗∗

(4.24) (4.54) (4.19) (4.56) (4.24)
RPC1 28.82∗∗∗ 23.08∗∗∗ 24.00∗∗∗ 22.98∗∗∗

(7.29) (6.39) (6.32) (6.29)
RPC2 14.82∗∗∗ 3.15

(2.83) (0.90)
RPC3 6.51∗∗ 8.89∗∗∗ 3.46 8.40∗∗∗

(2.61) (4.51) (1.24) (4.16)
RPC4 2.45 2.75∗

(1.18) (1.98)
RPC5 8.84∗∗∗ 3.85∗∗∗

(6.36) (4.08)
SMB 0.39 0.71

(0.31) (0.55)
HML 5.25∗∗∗ 4.68∗∗∗

(4.08) (3.62)
MOM 9.64∗∗∗ 9.43∗∗∗

(5.17) (5.05)

R2 6.27 27.68 58.77 23.05 56.85

χ2-statistic 181.36∗∗∗ 154.92∗∗∗ 99.28∗∗∗ 141.96∗∗∗ 87.36∗∗∗

(p-value) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: Fama and MacBeth (1973) cross-sectional estimation of risk premia λ̂j ∀j ∈
{MKT,RPCi, SMB,HML,MOM} according to equations (5), (6), (7) and (8). Column

(1) estimates the CCAPM (only MKT factor), (2) ICAPM with MKT and RPC1 to RPC4

factors, (3) model in (2) and controlling for SMB, HML, MOM factors, (4) model in (2)

and RPC5 factors, (5) model in (4) and controlling for SMB, HML, MOM factors. R2 is

the cross-section regression fit. χ2-statistic is the joint test of
∑T
t=1

α̂n,t

T = 0 for all assets

n ∈ {1, . . . , N}. The p-value (in percentage points) of the χ2-statistic is parentheses. Test

assets are 10 momentum and 25 size and book-to-market portfolios. Newey and West (1987)

robust t-statistics are reported in parentheses below coefficient estimates. Significance at the

1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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Tables 6, 7 and 8 report Fama and MacBeth (1973) regression estimates of risk premia

λ̂j ∀j ∈ {MKT,RPCi, SMB,HML,MOM} in (8) for 10 momentum, 25 size and book-to-

market, and all 35 portfolios combined. We consider several model specifications: column

(1) estimates the CCAPM (MKT is the only factor), (2) ICAPM with MKT and RPCi

∀i ∈ {1, . . . , D} where D is the number of significant principal components according to

Horn’s parallel analysis, (3) model in (2) and controlling for SMB, HML, MOM , (4)

ICAPM with MKT and RPCi ∀i s.t. RPCi earns significant abnormal returns according to

the CAPM, and (5) model in (4) and controlling for SMB, HML, MOM .

In accordance with the findings by Bollerslev et al. (1988), Ng (1991), Bali (2008), Bali

et al. (2009), Bali and Engle (2010), Bali et al. (2016), and Bali and Engle (2016), the

estimated market risk premium λ̂MKT is economically large (between 5.95% and 8.68% per

annum) and statistically significant across all model specifications and sets of test assets.

As already mentioned in this literature, this is good news for the CAPM because rejections

of the unconditional CAPM (based on the finding that the implied market risk premium is

insignificant in cross-sectional tests) are of no concern in a dynamic version of the CAPM.

In general, implied risk premia for common shocks to conditional market beta are econom-

ically large and significant, even after controlling for SMB, HML and MOM . Moreover,

there appears to be some overlap between factors capturing common shocks to conditional

market beta (i.e., RPCi) and SMB, HML and MOM . However, these factors are not

perfect substitutes, i.e., common shocks to conditional market beta do no capture all the

pricing information in SMB, HML and MOM , and conversely SMB, HML and MOM

do not explain all relevant pricing information in RPCi.

For the 10 momentum portfolios (table 6), we find that RPC1 carries an economically

large and statistically significant risk premium of about 15% per year. Although we docu-

ment in section 3.2 table 3 that RPC1 is highly correlated with MOM , the estimated risk

premium of RPC1 is hardly affected by MOM in our cross-sectional estimation (i.e., com-

pare coefficients in columns (2) and (3) or (4) and (5)). Although only the first principal

component significantly captures common variation in dβt, we show in table 3 that RPC2

and RPC3 also earn sizable and statistically significant abnormal returns according to the
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CAPM. Thus, in column (4) and (5) of table 6 we estimate the implied market risk premia

of RPC2 and RPC3. We find again economically large (between 2.07% and 5.34% per year)

and statistically significant premia. Again, although we know from table 3 that RPC2 and

RPC3 are related to SMB, HML and MOM , controlling for these three factors does hardly

affect the implied risk premia (and if anything they become larger; compare columns (4) and

(5)).

We further observe that common shocks to conditional market beta (i.e., RPCi) do not

fully absorb the risk premium of the MOM factor. In other words, MOM appears to

add additional information to the pricing equation, which is not explained by shocks to

conditional beta. We make several simplifying assumptions in our estimation. For instance,

we assume that µm,t, γt and µx,t are constant through time in the ICAPM relation (1). That

is, our approach only investigates pricing implications of shifts in the investment opportunity

set due to of shocks to conditional market beta. MOM potentially proxies for shifts in the

investment opportunity set, which are not captured by dβt, i.e., namely shocks to µm,t, γt or

µx,t.

The cross-sectional regression fit (R2) is very low in the CCAPM (MKT is single factor)

and improves substantially when introducing RPC1 as an additional pricing factor. We also

observe a substantial increase in the R2 when we introduce RPC2 and RPC3 or when we

control for (SMB, HML and) MOM . Again, we interpret this as evidence that RPCi

are important pricing factors. Moreover, although there is some overlap between RPCi and

MOM , they are not perfect substitutes and none of the factors is redundant. Finally, we

note that the joint hypothesis that all abnormal returns are equal to zero is rejected with

a large confidence, except for the ICAPM with MKT , RPC1 to RPC3, SMB, HML and

MOM factors as indicated the the χ2 statistic in table 6.

The qualitative results are similar for the set of 25 size and book-to-market portfolios

(table 7). RPC1, which is found to be strongly associated with SMB (cf. table 4), carries a

sizable risk premium but the coefficient estimate is only significant on the 5% and becomes

even less significant (on the 10% level) after we control for SMB, (HML and MOM). In

contrast, RPC2, which is strongly associated with HML (cf. table 4), earns an economically
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large (between 6.54% and 7.98% per year) and statistically significant risk premium across all

model specifications. Moreover, RPC3 and RPC4 (which do not capture common variation

in dβt according to Horn’s parallel analysis but earn significant abnormal returns according

to the CAPM) carry again sizable (between 1.91% and 2.53% per year) and statistically

significant risk premia, independent of the model specification.

For the set of all 35 momentum, size and book-to-market portfolios combined, we estimate

an economically large (between 22.98% and 28.82% per year) and statistically significant risk

premium for RPC1. The risk premium is slightly smaller but still economically large and

significant after controlling for SMB, HML and MOM . RPC2 has a large and significant

risk premium in a the CAPM, but once we control for SMB, HML and MOM , RPC2’s

implied risk premium becomes insignificant. This suggests that the three factors fully capture

the shocks to conditional market beta described by the second principal component. RPC3

and RPC5 have economically large and significant risk premia across all model specifications.

RPC4 does not appear to be compensated by a significant risk premium.

For both sets of assets (25 size and book-to-market or all 35 portfolios combined), we

again note that (as in the case of the 10 momentum portfolios) RPCi do not reduce the risk

premia of HML and MOM to zero. Moreover, adding additional RPCi or SMB, HML

and MOM to the model improves the cross-sectional regression fit. This again suggests that

both common shocks to conditional market beta (RPCi) and SMB, HML and MOM are

important and non-redundant pricing factors. Finally, the joint hypothesis that all abnormal

returns are equal to zero is rejected across all model specifications.

In summary, we confirm the finding of Bollerslev et al. (1988), Ng (1991), Bali (2008),

Bali et al. (2009), Bali and Engle (2010), Bali et al. (2016), and Bali and Engle (2016) that

conditional market beta explain average returns in the cross-section. Moreover, common

shocks to conditional market beta are priced risks in the cross-section and are compensated

by economically large and statistically significant risk premia. Controlling for SMB, HML

and MOM does not change these results. Therefore, common shocks to conditional market

beta are important state variables in the ICAPM. Finally, there appears to be some overlap

between factors capturing common shocks to conditional market beta and SMB, HML and
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MOM . This means that that latter three factors can be used as state variables to proxy

for common shocks to conditional market beta. They may or may not be useful beyond

that to proxy for other economic quantities which affect other dimensions of the investment

opportunity set such as the conditional market risk premium, for instance.

5 Conclusion

We estimate conditional market beta for 10 momentum and 25 size and book-to-market

stock portfolios from 1946 to 2016. Our idea is that changes in conditional market beta

imply changes in the investment opportunity set (i.e., changes in expected returns and the

covariance matrix of returns), and thus, they are state variables in the ICAPM.

We show that sorting stocks according to past performance (momentum), size or book-

to-market ratios is equivalent to divide them into groups such that conditional market beta

of stocks within each group closely move together. Moreover, we use principal component

analysis to construct factors that capture common shocks to conditional market beta, and

show that the first few components explain a large part of the variation in changes in con-

ditional market beta. We then estimate risk premia of the principal components and find

that common shocks to conditional market beta are compensated by economically large and

statistically significant risk premia. This implies that common shocks to conditional market

beta are important state variables.

Finally, we document some overlap between our factors capturing common shocks to

conditional market beta and the three FFC factors (SMB, HML, MOM). This findings

provides some economic interpretation for the FFC factors. It further suggests that they

are suitable proxies for state variables in the ICAPM, at least to the extend that they

capture common shocks to conditional market beta. We do not take a stand on whether

the FFC factors are also suitable proxies for other shocks to the investment opportunity set

beyond changes in conditional market beta, for instance, shocks to the conditional market

risk premium.
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