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Abstract

This paper aims to investigate long-term portfolio management in a fully struc-

tural macro-financial framework. First, we estimate a Dynamic Stochastic General

Equilibrium (DSGE) model that describes the dynamics of the U.S. economy and

financial markets. In addition to the typical macro-economic variables, the model

includes financial variables such as firm market values, dividend payments, and

long-term government bond returns. The model generates long-term forecasts of

key variables, which are used for the dynamic asset allocation of long-term institu-

tional investors. We show that the DSGE model outperforms an unrestricted VAR

model in long-term portfolio allocation.
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1 Introduction

Given the population’s ever-increasing life span, institutional investors and pension funds

have an increasing social responsibility to allocate their funds in an optimal manner. The

allocation must be made on a long-term basis and the institutional investor must account

for the expected evolution of financial markets. The theoretical literature provides some

guidance on how such allocations may be performed. If asset returns are independently

and identically distributed (i.i.d.) and investor preferences do not change over time,

then a simple buy-and-hold strategy is optimal and the optimal portfolio weights are

the same across different investment horizons (Samuelson, 1969). Merton (1969, 1971)

discusses multiperiod portfolio allocation under the assumption that the distribution of

returns fluctuates over time. In such a case, it is optimal for the investor to hedge against

adverse movements of expected returns. In addition, if the investment opportunity set

depends on certain state variables, the investor should invest in a hedging portfolio based

on these state variables, and thus, the long-term portfolio will differ from a buy-and-hold

portfolio.

The predictability of asset returns plays a major role in the context of long-run portfo-

lio allocation. Brennan, Schwartz, and Lagnado (1997) empirically analyze the impact of

myopic versus dynamic portfolio choice. The authors find that, because of mean reversion

in stock and bond returns, an investor with a long horizon will place a larger fraction of

her wealth in stocks and bonds compared with an investor with a short horizon. Barberis

(2000) reports that, even after parameter uncertainty is taken into account, sufficient

stock return predictability remains to enable investors to allocate more to stocks. Camp-

bell and Viceira (1999, 2001, 2002) and Campbell, Chan, and Viceira (2003) investigate

several aspects of long-term investment in a VAR model with asset returns predictability.

They observe that a long-term investor with a dynamic portfolio strategy should prefer

stocks to cash and nominal long-term bonds because, in their model, the intertemporal

hedging demand is positive for stocks and negative for nominal long-term bonds. Sangv-

inatsos and Wachter (2005), on the other hand, use an affine term structure model to

investigate bond return predictability. They show that allowing for a time-varying bond
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risk premium results in a high hedging demand for long-term bonds. This high hedging

demand arises because investing in long-term bonds allows the investor to hedge against

a decrease in the bond premium. Koijen, Nijman, and Werker (2010) use a model with a

factor structure to evaluate the importance of the bond premium for a life cycle investor

with short sales and borrowing constraints. They find that, with a time-varying bond

risk premium, the hedging demand is negative for stocks and positive for bonds, although

the magnitude of the effects is limited by the restrictions on short selling.

Most of the empirical work on long-term asset allocation has used reduced-form mod-

els. For instance, Barberis (2000), Campbell and Viceira (1999, 2001, 2002), and Camp-

bell, Chan, and Viceira (2003) use a VAR(1) model to estimate the dynamics of asset

returns. The VAR specification is an appealing approach because long-term forecasting

can be performed in a straightforward manner. However, with this approach, the pa-

rameters that are estimated in the model are not structural (or deep) parameters and

thus are likely to be affected by changes in government decisions and monetary policy,

as highlighted by Lucas (1976). To address this issue, we consider a micro-founded Dy-

namic Stochastic General Equilibrium (DSGE) model with real and nominal rigidities,

which is similar to the models of Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2003, 2007). This approach performs well in reproducing U.S. macro data

dynamics.

Several papers demonstrate that macro variables are useful for predicting bond and

stock returns. See, e.g., Cochrane (1991), Lettau and Ludvigson (2001), Ang and Piazzesi

(2003), Santos and Veronesi (2006), and Cooper and Priestley (2008). We therefore expect

a DSGE model to capture such predictability. Because stock returns depend on dividends

and thus on firm’s earnings, we describe how the firm generates dividends with a model

of firm’s revenues and expenses (wages, investment, and taxes), following Jermann (1998)

and Boldrin, Christiano, and Fisher (2001). We extend the model described by Alpanda

(2013) to allow for the interaction between the business cycle and the stock market. This

model builds on the work of Christiano, Eichenbaum, and Evans (2005) and Smets and

Wouters (2003, 2007). We further introduce government bonds as a financing instrument
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for the government and as a way for households to transfer wealth from one period

to another. DSGE models have been widely used to describe term structure dynamics

because the pricing kernel can be implicitly derived from macro models (Ang and Piazzesi,

2003; Hördahl, Tristani, and Vestin, 2008; Wu, 2006; Bekaert, Cho, and Moreno, 2010).

A well-known limitation of DSGE macro-finance models, however, is their inability to

generate time-varying risk premia (Rudebusch, Sack, and Swanson, 2007). To address

this issue, we further introduce portfolio adjustment frictions (or rebalancing costs), which

can be interpreted as dynamic bond and stock risk premia in the log-linearized model.

This approach has two main advantages: First, it provides the DSGE model with some

flexibility, so that it is able to reproduce the dynamics of bond and stock returns relatively

well. Second, it allows us to investigate how changes in the risk premia will affect the

hedging demands and the optimal allocation of the long-term investor.

Our DSGE macro-finance model includes ten observable variables that are based on

U.S. data that were gathered over the period from 1955 to 2010. We estimate the model

with Bayesian techniques, which allow us to address the complexity of the model and

the relatively small sample of data that are available for the estimation. Given our focus

on long-term investment, we then evaluate the ability of the DSGE model to predict the

evolution of financial returns in the long term. This model performs very well in predicting

bond returns in the long term, whereas forecasts of stock returns are less accurate. We

then investigate the term structure of risk of the various assets across different investment

horizons. We find that, in the DSGE model, the annualized volatility of stock returns

decreases with the investment horizon, consistently with the mean reversion in stock

returns. Annualized volatility also decreases with the horizon for rolled long-term bonds,

but it increases with the horizon for short-term bonds. These patterns are very stable

over time.

We then study the optimal dynamic allocation for a long-term institutional investor,

adopting the approach of Campbell, Chan, and Viceira (2003). However, instead of using

a VAR model to predict asset returns, we rely on our full-fledged macro-finance model.

In this approach, the optimal weights are linear functions of the state variables, i.e., the
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main macro variables. The constant component corresponds to the myopic allocation,

whereas the components that are linear with respect to the state variables correspond to

the hedging demands of the investor. Thus, the investment rule is set at the beginning of

the investment process, and the portfolio weights are updated according to the evolution

of the state variables. We find high hedging demands for bonds because of the large

correlation between bond returns and changes in the bond premium. Hedging demands

are also positive for stocks, although they decrease as risk aversion increases. This finding

explains why an investor with low risk aversion holds large fractions of her wealth in stocks

and bonds, whereas a very risk-averse investor favors bonds.

Finally, we evaluate the (out-of-sample) ex-post performances of investment strategies

based on the DSGE model, which we compare with an unrestricted VAR(1) model. One

important finding is that both types of models have a similar forecasting ability for macro

variables; however, the DSGE model strongly outperforms the VAR model in forecasting

financial returns. As long-term bonds are very good hedges against changes in the bond

premium in the DSGE model, they are associated with high positive hedging demands.

As a result, the DSGE portfolio is typically long bonds and short stocks. In contrast,

long-term bonds do not help with hedging the bond premium in the VAR model, so

the VAR portfolio typically comprises long stocks and short bonds. In addition, for all

levels of risk aversion and investment horizons, the DSGE model exhibits higher expected

returns and Sharpe ratios than the VAR model. We interpret this result to occur because

of the better ability of the DSGE model to describe the dynamics of the stock and bond

premia.

The remainder of the paper is organized as follows. In Section 2, we describe the the-

oretical DSGE model, which we will use to forecast future financial returns. In Section

3, we present the data and parameter estimates and evaluate the ability of the model to

predict future financial returns, with a particular focus on out-of-sample predictability.

In Section 4, we investigate the optimal dynamic asset allocation from a long-term per-

spective. In Section 5, we evaluate the out-of-sample performance of a long-term investor
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using a DSGE model and compare this performance with that of an investor using a VAR

model. The final conclusions are presented in Section 6.

2 Model

This section briefly describes the macro-financial model that is considered in this paper.

The model is based on the workhorse model developed by Christiano, Eichenbaum, and

Evans (2005) and Smets and Wouters (2007) and incorporates some financial aspects

proposed by Alpanda (2013). We follow the presentation of the model proposed by

Smets and Wouters (2007) and Alpanda (2013) and mostly focus on the new aspects

of our model in this framework, i.e., the introduction of a complete term structure and

portfolio adjustment frictions.

2.1 Labor Intermediaries

Labor intermediaries hire the labor services of households, aggregate them, and offer a

composite labor service, ht, to intermediate good producers. The labor service supplied

by household j is denoted by hst(j). The composite labor service is aggregated by using

a Dixit-Stiglitz aggregator (Dixit and Stiglitz, 1977):

ht =

[∫ 1

0

hst(j)
(Ψt−1)/Ψt dj

]Ψt/(Ψt−1)

, (1)

where ψt = Ψt/(Ψt−1) is a wage markup shock.1 At the steady state, ψ = Ψ/(Ψ−1) is the

gross markup of real wages received by households over the marginal rate of substitution

between consumption and leisure. The aggregate labor services are then sold to the

intermediate good producers. Maximization of the labor intermediaries’ profit, Wtht −∫ 1

0
Wt(j)h

s
t(j)dj, gives the labor demand curve of household j:

hst(j) =

[
Wt(j)

Wt

]−Ψt

ht, (2)

1The dynamics of the shocks and risk premia are fully described in Section 2.8.
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where Wt is the aggregate nominal wage.

2.2 Households

The economy is populated with infinitely lived households. The population of each house-

hold is denoted by Nt, which grows as Nt+1 = ηNt. As in Fuhrer (2000), households have

consumption habits, such that their utility depends on their current consumption rela-

tive to the past aggregate consumption. The habit level of consumption is defined as

ζCt−1, where Ct−1 is the past level of aggregate consumption and ζ is the habit parame-

ter. Each household j maximizes the expected utility defined over surplus consumption,

Ct(j)− ζCt−1, and labor supply, hst(j):

Eτ

∞∑
t=τ

βt−τUt(j)Nt, (3)

with the following period utility:

Ut(j) = vt

[
(Ct(j)− ζCt−1)1−σC

1− σC

]
exp

(
−ξ 1− σC

1 + σL
(hst(j))

1+σL

)
, (4)

where β is the time discount factor (β < 1), vt is the preference shock that affects

the discount rate, σC is the inverse of the elasticity of intertemporal substitution (and

relative risk aversion), σL is the inverse of the elasticity of the labor supply, and ξ is a

level parameter, which is set such that labor equals 1 at the steady state of the model.

Households own the intermediate good firms and trade shares of these firms. House-

hold j holds St(i, j) shares of intermediate firm i and receives Dt(i) as per-share divi-

dends. The value of a share of firm i is Vt(i). In contrast to Smets and Wouters (2007)

and Alpanda (2013), we also allow households to carry a portfolio of nominal zero-coupon

government bonds with remaining maturities ranging from 1 to K periods. Household

j holds Q
(k)
t (j) bonds of maturity k at time t, which pay 1 dollar at the end of period

t+ k− 1. The price of such a bond is B
(k)
t , where B

(0)
t = 1. This extension to a model in

which households can hold stocks and bonds is an important contribution of our paper,
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as it will allow us to analyze long-term investment strategies in cash, bonds, and stocks,

along the lines of Campbell, Chan, and Viceira (2003), within a DSGE framework.

An important issue in the construction of macro-finance models in a DSGE frame-

work is that, once log-linearized, DSGE models are unable to generate time-varying risk

premia. This problem has been addressed in several papers, following Rudebusch, Sack,

and Swanson (2007), by investigating alternative ways of introducing time variability in

the risk premia. For instance, Hördahl, Tristani, and Vestin (2006) and Rudebusch and

Swanson (2008) consider higher-order approximations of the DSGE model; van Binsber-

gen et al. (2012) and Rudebusch and Swanson (2012) introduce Epstein and Zin (1989)

recursive preferences; Guvenen (2009) and De Greave et al. (2010) allow for heterogenous

agents. In this paper, we follow the approach proposed by Marzo, Soderström, and Za-

gaglia (2008) and Falagiarda and Marzo (2012), who describe bond market segmentation

through portfolio adjustment frictions.2 Given these frictions, which we also interpret as

rebalancing costs, households have a preference for holding bonds of different maturities,

resulting in nonzero demands for the various maturities.

We denote the rebalancing costs for the equity and bond holdings by Φs,t and Φ
(k)
b,t ,

k = 1, · · · , K, respectively, where Φ
(1)
b,t is normalized to 0. As we will show later, these

rebalancing costs can be interpreted as time-varying risk premia for the various risky

assets. The budget constraint of household j in period t is:

NtCt(j) +
K−1∑
k=1

(1 + Φ
(k)
b,t )

B
(k)
t

Pt
(Q

(k)
t (j)−Q(k+1)

t−1 (j)) + (1 + Φ
(K)
b,t )

B
(K)
t

Pt
Q

(K)
t (j)

+(1 + Φs,t)

∫ 1

0

Vt(i)

Pt
(St(i, j)− St−1(i, j))di+ Φw,t(j) ≤ (1− τh)

Wt(j)

Pt
Nth

s
t(j)

+(1− τd)
∫ 1

0

Dt(i)

Pt
St−1(i, j)di+

Q
(1)
t−1(j)

Pt
− Tt
Pt
, (5)

2The justification for such adjustment frictions can be found in the “preferred habitat” theory
(Modigliani and Sutch, 1966, 1967; Vayanos and Vila, 2009; Guibaud, Nosbusch, and Vayanos, 2008).
Alpanda (2013) also introduces a time-varying risk premium for risky stocks; however, the shock affects
the short-term bond holdings such that it cannot be extended to the case of several risky assets. See also
Andrés, López-Salido, and Nelson (2004) and De Graeve et al. (2010). Buss and Dumas (2012) propose
an equilibrium model in which financial trade entails deadweight transaction costs.
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where Pt is the aggregate price, τh is the tax on labor, τd is the tax on dividend income,

and Tt is a lump-sum tax (see McGrattan and Prescott, 2005). As in Rotemberg (1982)

and Chugh (2006), wage stickiness is introduced in the form of a quadratic adjustment

cost, Φw,t(j), defined as follows:

Φw,t(j) =
κw
2

(Ψ− 1)(1− τh)
[
Wt(j)/Wt−1(j)

(πγ)(πt−1/π)ηw
− 1

]2
Wt

Pt
Ntht,

where κw is the cost-of-adjustment parameter; ηw is the indexation parameter of wage

adjustments to past aggregate inflation, denoted by πt−1 = Pt−1/Pt−2; and π is the steady-

state inflation rate. Household j maximizes expected utility (3) subject to the sequence

of budget constraints (5) for t = τ, · · · ,∞. We denote by Λt the Lagrange multiplier

with respect to the budget constraint at t.

2.3 Final Good Producers

Final good producers purchase goods from intermediate firms, aggregate them, and sell

the final good to consumers. The composite final good is aggregated by using a Dixit-

Stiglitz aggregator:

Yt =

[∫ 1

0

Yt(i)
(Θt−1)/Θt di

]Θt/(Θt−1)

,

where θt = Θt/(Θt − 1) is a price markup shock. At the steady state, θ = Θ/(Θ − 1)

is the price gross markup over the marginal cost. Maximization of the final producers’

profit, PtYt −
∫ 1

0
Pt(i)Yt(i)di, yields the demand curve for the intermediate goods:

Yt(i) =

[
Pt(i)

Pt

]−Θt

Yt. (6)

2.4 Intermediate Good Producers

Intermediate good producers own capital stock and are price setters in the goods market.

The production function of intermediate good producer i is:

Yt(i) = zt [ut(i)Kt−1(i)]α [AtNtht(i)]
1−α − (ηγ)tf,
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where zt is the aggregate technology shock, Kt(i) is the capital owned by firm i, ut(i) is

the utilization rate of capital, Ntht(i) is the amount of labor that is used in the production

of intermediate good i, At is the trend of productivity growth (At = γt), and (ηγ)tf is

the fixed cost of production.3 Parameter α represents the share of capital in production.

Capital accumulation is given by:

Kt(i) = (1− δ)Kt−1(i) +

[
1− κI

2

(
It(i)

(ηγ)It−1(i)
− 1

)2
]
zIt It(i),

where It(i) is the investment of firm i, zIt is an investment-specific technology shock, δ is

the depreciation rate of capital, and κI is the cost-of-investment-adjustment parameter.

The term in squared brackets captures the cost of investment adjustment.

Dividends that are paid out to shareholders are equal to the residual of the total

revenue after payments for wages, investments, price adjustment costs, and taxes are

subtracted:

Dt(i)

Pt
= (1− τs)

Pt(i)

Pt
Yt(i)−

Wt

Pt
Ntht(i)− It(i)− Φp,t(i)

−τy
[
(1− τs)

Pt(i)

Pt
Yt(i)−

Wt

Pt
Ntht(i)− δaKt−1(i)

]
+ (ηγ)tΦd,t,

where τs and τy are proportional taxes on sales and income, respectively, and δa is the

accounting depreciation rate. Regarding wages, we introduce price stickiness in the form

of quadratic adjustment cost (Rotemberg, 1982, and Chugh, 2006). The quadratic cost

of price adjustment, Φp,t, is defined as follows:

Φp,t(i) =
κp
2

(Θ− 1)(1− τs)(1− τy)
[
Pt(i)/Pt−1(i)

π(πt−1/π)ηp
− 1

]2

Yt,

where κp is the cost-of-adjustment parameter and ηp is the price indexation parameter.

(ηγ)tΦd,t is an exogenous transfer from the government to firms, where the stationary

component Φd,t represents a dividend shock.

3The fixed cost is set such that intermediate good producers make no economic profit in the long run.
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The objective of intermediate good producers is to maximize after-tax dividends:

Eτ

∞∑
t=τ

βt−τ
Λt

Λτ
(1− τd)

[
Dt(i)

Pt
− κu

1 + χ

(
ut(i)

1+χ − 1
)
Kt−1(i)

]
,

where κu is a scale parameter ensuring that the utilization rate equals 1 at the steady

state and χ is a capacity utilization elasticity parameter. The last term measures the

cost of capital utilization.

2.5 Government and the Central Bank

As in Smets and Wouters (2007), government expenditure is defined as Gt = (ηγ)tgt, the

stochastic component of which, gt, responds to productivity innovations. At time t, the

government issues new bonds with maturities k = 1, · · · , K and reimburses the bonds

issued k = 1, · · · , K periods beforehand. The budget constraint in period t is given by:

Gt + (ηγ)tΦd,t +
K∑
k=1

Q
(k)
t−k

Pt
=
Tt
Pt

+ τh
Wt

Pt
Ntht + τd

Dt

Pt
st−1 + τsYt

+ τy

[
(1− τs)Yt −

Wt

Pt
Ntht − δaKt−1

]
+

K∑
k=1

B
(k)
t Q

(k)
t

Pt
.

We assume that the lump-sum tax, Tt, paid by households reacts to the debt level to

avoid an explosive path of debt.

The central bank’s Taylor rule gives the dynamics of the one-period gross nominal

interest rate:

R1,t

R1

=

(
R1,t−1

R1

)ρr [(πt
π̄t

)aπ ( Yt
Y n
t

)ay ( Yt/Yt−1

Y n
t /Y

n
t−1

)ag]1−ρr
εr,t,

where R1 is the steady-state level of the nominal policy rate, ρr is the interest rate

smoothing parameter, and aπ, ay, and ag are the Taylor rule’s weights. Y n
t is the natural

rate of output, which is defined as the level of output that would prevail under flexible

prices in the absence of cost-push shocks.4 εr,t is the monetary policy shock, and π̄t is the

4The natural rate of output is computed in a model-consistent manner by solving the model with
flexible prices and wages. See Smets and Wouters (2003).
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time-varying inflation rate targeted by the central bank, which is described as an AR(1)

process:

log π̄t = ρπ̄ log π̄t−1 + ςπ̄ηπ̄,t. (7)

2.6 Market-Clearing Conditions

At equilibrium, all the markets clear, which results in the following relations:

• Goods market-clearing condition:

NtCt + It +Gt = Yt − Φw,t − Φp,t − Φac,t,

where Φac,t denotes the sum of the adjustment costs for bonds and stocks paid by

households, as they represent a resource cost.

• Labor services market-clearing condition:

ht =

∫ 1

0

ht(i) di =

[∫ 1

0

hst(j)
1/ψt dj

]ψt
.

• Bond market-clearing condition:

Q̄
(k)
t =

∫ 1

0

Q
(k)
t (j) dj, ∀k = 1, · · · , K,

where Q̄
(k)
t =

∑K−k
τ=0 Q

(τ+k)
t−τ denotes the number of government bonds with maturity

k available at date t to households.

• Equity market-clearing condition:

St(i) =

∫ 1

0

St(i, j) dj, ∀i.

Equilibrium is attained when all agents maximize their objective functions and all

markets clear. We assume a symmetric equilibrium, where all the households and all the

intermediate good producers have the same characteristics.
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2.7 Financial Asset Returns

At the symmetric equilibrium, the first-order condition with respect to consumption yields

the following marginal utility of consumption (Lagrange multiplier with respect to the

household budget constraint):

Λt = vt(Ct − ζCt−1)−σC exp

(
−ξ 1− σC

1 + σL
(hst)

1+σL

)
.

Under complete markets and in the absence of arbitrage opportunities, the first-order

conditions with respect to asset holdings yield the pricing equations for the financial

assets. For a one-period bond, we have:

1 = β Et

[
Λt+1

Λt

R1,t+1

πt+1

]
,

where R1,t+1 = 1/B
(1)
t is the one-period gross nominal interest rate set by the central

bank for the period between t and t+ 1.

For longer-maturity bonds, we have:

1 = β Et

[
Λt+1

Λt

(1 + Φ
(k−1)
b,t+1 )

(1 + Φ
(k)
b,t )

R
(k)
b,t+1

πt+1

]
, for k = 2, · · · , K,

where R
(k)
b,t+1 = B

(k−1)
t+1 /B

(k)
t denotes the gross nominal holding period return of the bond

of maturity k held between t and t+ 1. We also define Y
(k)
b,t = (B

(k)
t )1/k the gross nominal

yield to maturity of a k-period bond issued at time t.

For a given stock i, the pricing equation is (we omit the exponent i in the following

expressions):

1 = β Et

[
Λt+1

Λt

1

πt+1

(1 + Φs,t+1)Vt+1 + (1− τd)Dt+1

(1 + Φs,t)Vt

]
.

We define Rs,t+1 = (Vt+1 + (1 − τd)Dt+1)/Vt as the gross nominal return of a stock held

between t and t+ 1.

Finally, we define real returns as ρ1,t+1 = R1,t+1/πt+1 for the risk-free asset, ρ
(k)
b,t+1 =

R
(k)
b,t+1/πt+1 for government bonds, and ρs,t+1 = Rs,t+1/πt+1 for stocks.
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2.8 Shocks and Log-Linearization

Consistent with the approach promoted by Smets and Wouters (2007) and Alpanda

(2013), the model is driven by several shocks: the shocks to preferences (vt), the wage

markup (ψt), the price markup (θt), technology (zt), investment-specific technology (zIt ),

dividends (Φd,t), government spending (gt), and monetary policy (εr,t). These shocks have

the following ARMA(1,1) dynamics:

log vt = ρv log vt−1 + ηv,t − ςvηv,t−1,

logψt = (1− ρψ) logψ + ρψ logψt−1 + ηψ,t − ςψηψ,t−1,

log θt = (1− ρθ) log θ + ρθ log θt−1 + ηθ,t − ςθηθ,t−1,

log zt = ρz log zt−1 + ηz,t − ςzηz,t−1,

log zIt = ρI log zIt−1 + ηI,t − ςIηI,t−1,

Φd,t = ρdΦd,t−1 + ηd,t − ςdηd,t−1,

log gt = (1− ρg) log g + ρg log gt−1 + ρg,zηz,t + ηg,t − ςgηg,t−1,

log εr,t = ρr log εr,t−1 + ηr,t − ςrηr,t−1,

where η indicates mutually uncorrelated i.i.d. shocks. Regarding rebalancing costs, we

adopt an agnostic view and assume ARMA(1,1) processes:

φ
(k)
b,t = log(1 + Φ

(k−1)
b,t+1 )− log(1 + Φ

(k)
b,t ) = ρ

(k)
b φ

(k)
b,t−1 + η

(k)
b,t − ς

(k)
b η

(k)
b,t−1,

φs,t = log(1 + Φs,t+1)− log(1 + Φs,t) = ρsφs,t−1 + ηs,t − ςsηs,t−1.

The economy grows at a constant rate ηγ, where η is the average growth of the

population and γ is the average growth of per-capita output. Lower-case letters with tilde

denote stationary variables, obtained by dividing each level variable (upper-case letters)

by its deterministic trend, e.g., x̃t = Xt/(ηγ)t. Next, after detrending, all variables are

log-linearized around their steady state (x̆) and then denoted by x̂t = (x̃t − x̆)/x̆ ≈

log x̃t − log x̆ ≡ xt − x̄. The resulting log-linearized model is described in Appendix A.
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As the asset pricing conditions in the appendix show, expected returns on risky assets

are given by:

Etρ̂
(k)
b,t+1 = Etρ̂

(k)
f,t+1 + φ̂

(k)
b,t ,

Etρ̂s,t+1 = Etρ̂f,t+1 + φ̂s,t.

We notice from these equations that φ̂
(k)
b,t and φ̂s,t can be interpreted as time-varying risk

premia on bonds and stocks, respectively. These dynamics of the risk premia should cap-

ture the second-order properties of the DSGE model that are lost in the log-linearization

of the model. See Hördahl, Oreste, and Vestin (2008).5

3 Data and Estimation

3.1 Data

We use 10 observable variables to estimate the model: per-capita real GDP (GDPt), per-

capita real consumption (CONSt), per-capita real investment (INVt), per-capita labor

hours (HRSt), the real wage rate (WAGEt), the GDP deflator (Pt), the per-capita real

market value of nonfinancial firms (CAPt), the per-capita real dividends of nonfinancial

firms (DIVt), the federal funds rate (FFRt), and the long-term Treasury bond interest

5Alternatively, we could allow the risk premia to depend on some macro shocks. For instance, the
bond risk premium could be driven by the shock on government expenditure and the stock risk premium
could be driven by the technology shock. We leave the investigation of more general specifications for
further research.
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rate (LTRt). The measurement equation, xt = x̄+ x̂t, is given by:



∆ logGDPt

∆ logCONSt

∆ log INVt

logHRSt

∆ logWAGEt

∆ logPt

∆ logCAPt

∆ logDIVt

log(1 + FFRt)

log(1 + LTRt)



=



∆yt

∆ct

∆ιt

ht

∆wpt

πt

∆vpt

∆dpt

r1,t

yb,t



=



log γ

log γ

log γ

log h

log γ

log π̄

log γ

log γ

logR

logR



+



∆ŷt

∆ĉt

∆ι̂t

ĥt

∆ŵpt

π̂t

∆v̂pt

∆d̂pt

r̂1,t

ŷb,t



. (8)

In our study, the long-term bond is the 10-year Treasury bond. Although long-term bonds

were described as zero-coupon bonds in the previous section, the common investment

vehicles are coupon bonds. Thus, we adapt the definition of the bond holding-period

return, rb,t, to be consistent with that of coupon bonds.

For stocks, we consider the stock market as a whole instead of individual stocks.

The stock market return is computed from the value of equity and dividends available

from the aggregate balance sheet and flow of funds data. It is worth mentioning that,

following Alpanda (2013), our dividend series includes net buybacks, which allows us

to take into account corporate finance issues in a more realistic framework. Instead of

paying dividends, firms often prefer to buy back their own shares as a way of distributing

cash to shareholders. Further details regarding the data are provided in Appendix B.

Figure 1 displays the data that are used to estimate the model, and Table 1 provides

basic statistics for the observable variables. The sample that is used for the benchmark

estimation comprises data from the 1955-2010 period (224 quarterly observations). The

figure shows that most of the observable variables are clearly stationary, although hours

(h), inflation (π), the federal funds rate (r1), and the 10-year yield to maturity (yb) show

some persistence. As shown in the table, output growth mainly results from consumption,
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whereas investment growth is lower, on average, than consumption growth. By contrast,

most of the output volatility is derived from real investment. Regarding asset returns, we

note that the average inflation is lower than the average short-term rate and the average

long-term bond interest rate (3.44% per year for inflation versus 5.36% for the short-term

rate and 6.20% for the long-term rate). Finally, the average real stock return is 6.60%

per year.

3.2 Parametrization and Estimation

Some of the parameters of the model are calibrated when their values can be deduced

from accounting data, fiscal data, or long-term trend data. For this calibration, we follow

the approach of Alpanda (2013) by computing the parameters over the sample period,

1955-2010. Their values are reported in Table 2. The average real growth is equal to

3.1% per year (population growth, η, of 1.4% and per-capita output growth, γ, of 1.7%).

The average annual inflation and short-term rates are 3.4% and 5.4%, respectively. Tax

rates and shares are estimated by using accounting data to match steady-state relations

over the postwar period.

To facilitate comparison with previous work, we redefine some parameters. The capac-

ity utilization elasticity is defined as χe = χ/(1+χ). Similarly, we rescale the adjustment

costs as follows:

κp =
10(θ − 1) + 1

(1− κep)(1− β̃κep)
κep, and κw =

10(ψ − 1) + 1

(1− κew)(1− β̃κew)
κew.

We also set ξ = ((1− τh)w̄p/ȳ)(ψ(1− ζ/γ)c̄/ȳ) and f = ȳ(θ − 1) to normalize the labor

supply and intermediate good producers’ profit in the long run.

The model is estimated by using Bayesian methodology.6 The dynamic system is

mapped to a state-space representation for the set of observable variables. The Kalman

filter is then used to evaluate the likelihood of the observed variables and to form the

posterior distribution of the structural parameters by combining the likelihood function

6For the estimation of DSGE models, Schorfheide (2003), Fernandez-Villaverde and Rubio-Ramirez
(2004), and Smets and Wouters (2007), among others, propose the use of Bayesian methodology.
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with a joint density characterizing some prior beliefs. Given the specification of the

model, the posterior distribution cannot be recovered analytically but can be evaluated

numerically by using a Markov Chain Monte-Carlo sampling approach. More specifically,

we rely on the Metropolis-Hastings (MH) algorithm to obtain random draws from the

posterior distribution of the parameters.7

Because Bayesian estimation requires some priors on the parameters, we begin with

a description of these priors, reported in Table 3. Our priors are rather similar to,

although generally less restrictive than, those adopted in previous studies (in particular,

Smets and Wouters, 2003; Jondeau and Sahuc, 2008) and closely match the priors selected

by Alpanda (2013). We assume a Beta distribution for the following parameters bounded

between zero and one: the habit persistence parameter (ζ), the degree of price and wage

indexation (ηp and ηw), the smoothing parameter in the monetary policy rule (ρr), the

adjustment cost parameters (κew, κeρ, and κeI), and the autoregressive and moving-average

parameters for shocks. The inverse of the consumption elasticity of substitution (σC),

the inverse of the elasticity of labor supply (σL), the price and wage markups (θ and ψ),

and the Taylor rule parameters (aπ, ay, and ag) have a normal prior. All priors on the

shock variances have an inverse gamma distribution.

The mean and confidence interval of the posterior distribution of the parameters are

also reported in the table. Regarding household behavior, our estimate of the inverse of

the consumption elasticity of substitution (σC) is 1, while the inverse of the elasticity of

labor disutility (σL) is approximately 2.5. The habit persistence parameter ζ is estimated

to be 0.94. Regarding the behavior of firms, we find that wage indexation is significantly

larger than price indexation (ηw = 0.46 versus ηp = 0.19). The adjustment costs for prices

and wages are estimated to be similar, with values of approximately 0.85. In the reaction

function, the long-run impact of inflation and the output gap on the short-term interest

rate is approximately 1.2 and 0.1, respectively. Our parameter estimates are broadly in

line with the estimates reported by Alpanda (2013), which are shown in the last column

7We simulate two blocks of 250,000 random draws. The first 100,000 observations are discarded to
eliminate any dependence on the initial values. The mode and Hessian of the posterior distribution
evaluated at the mode are used to initialize the MH algorithm.
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of our table for convenience.8 The new parameters correspond to the dynamics of the

inflation target and the bond and stock premia.

The evolution of the bond and stock premia are displayed in Figure 2. As the figure

shows, the bond premium is more persistent than the stock premium (ρb = 0.958 vs.

ρs = 0.816). In contrast, the stock premium is more volatile than the bond premium (the

variance of the premia is 4.5% and 16.3% per year for bonds and stocks, respectively).

Table 4 reports the correlation between the financial asset risk premia and the financial

asset returns for the initial estimation and allocation samples. We observe that the

correlations have changed over time, indicating that the hedging properties of the various

assets have also changed over time. Over the 1955-89 subperiod, cash is a good hedge

against stock risk but a bad hedge against short-term interest-rate risk and bond risk. In

contrast, bonds and stocks are good hedges against short-term interest-rate risk as bond

and stock returns increase when the short-term premium is negative. Over the recent

period from 1990 to 2010, we also notice that the correlation between bond returns and the

bond premium and that between stock returns and the stock premium are more negative.

This result indicates that bonds are good hedges against bond risk and that stocks are

good hedges against stock risk. As a consequence, we expect that when the bond risk

increases, the bond hedging demand increases and that when the stock risk increases,

the stock hedging demand increases. Correlations with a similar order of magnitude have

been reported in Sangvinatsos and Wachter (2005) for an affine term structure model.

Two potential issues with the estimation of the DSGE model over such a long sample

period are nonstationarity and parameter instability. Some of the autoregressive parame-

ters are found to be large and close to one, suggesting highly persistent dynamics. Such is

the case in particular for the investment shock (ρI) and the government shock (ρg), which

clearly reflect near-to-unit-root behavior. We also investigate the stability of the param-

eter estimates over time by reestimating the model with a rolling window of 35 years. We

find that some parameters (such as adjustment costs) have an increasing trend, whereas

8The model and sample period in Smets and Wouters (2007) differ from ours. In particular, their
wage and inflation dynamics are modeled within a staggered price setting à la Calvo (1983), whereas we
introduce stickiness through quadratic adjustment costs à la Rotemberg (1982). For these reasons, our
parameter estimates cannot be directly compared with those reported in Smets and Wouters (2007).
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other parameters (such as the inflation parameter in the reaction function) have a neg-

ative trend. This issue is partly due to the Federal Reserves adoption of a nonborrowed

reserve operating procedure during the 1979-1982 period.

The variability of the parameters over time clearly indicates that the allocation ex-

periment must be performed in real time and that it certainly cannot be performed by

using the same sample period for the estimation and allocation. We therefore investigate

the forecasting ability and allocation performance of both models over the 1990-2010

period, which is essentially stationary. To obtain relevant measures in the out-of-sample

investigation, we restrict the investment horizon to a maximum of 10 years, with 35-year

rolling windows for the parameter estimation.

3.3 Forecasts

To evaluate the strengths and weaknesses of the DSGE model in long-term asset alloca-

tion, we first consider the ability of the model to predict the variables of interest over

long horizons. To do so, we first estimate the DSGE model from 1955Q1 to 1989Q4 and

forecast all the variables over horizons ranging from one quarter to 10 years. We then roll

the sample by one quarter, reestimate the model from 1955Q2 to 1990Q1, and forecast

all the variables over the same horizons. We continue this procedure until we reach the

last window, 1975Q4 to 2010Q3, for which we forecast for the next quarter only.

Forecasting is straightforward in a DSGE model because such a model has a backward-

looking state-space representation, which can be ultimately written as a restricted VAR(1):

ŝt+1 = Gŝt +Hηt+1, (9)

where ŝt is the set of state variables, which includes the (demeaned) observables, the

shocks, and the future expected variables, and ηt is the set of structural innovations. We

assume that ηt is normally distributed with mean 0 and covariance matrix Ση. Thus, the

observables can be recovered through measurement equation (8):

xt = Φ0 + Φ1ŝt.
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The matrix of parameters Φ0 contains the long-term value of the observables. Matrix

Φ1 is simply a selection matrix because all the (demeaned) observables are also state

variables. The distribution of xt+k is simply:

xt+k ∼ N(µx,t(k),Σx(k)),

where µx,t(k) = Φ0 + Φ1G
kŝt, Σx(k) = Φ1Σs(k)Φ′1, and Σs(k) = D + GDG′ + · · · +

Gk−1D(Gk−1)′ denotes the k-period ahead covariance matrix of the state variables with

D = HΣηH
′.

The root mean square error (RMSE) is computed for the variables in levels. If a

variable is already in levels, we simply compare the expectation, µx,t(k), to the ex-post

observed variable, xt+k. If the variable is in differences, we compare the cumulative

expectation,
∑k

i=1 µx,t(i), to the ex-post observed variable in levels,
∑k

i=1 xt+i.

Table 5 reports the RMSE of the variables of interest for the DSGE model. The

RMSE is low for real output, consumption, hours, and real wages, even for long horizons.

Even at the 10-year horizon, the RMSE is below 8%. This result suggests that the mean

reversion of these variables plays a major role. The forecast error is larger for investment

because this series is much more volatile. Even in this case, mean reversion plays an

important role, as the RMSE decreases over long horizons.

Another important result is that the RMSE for cumulative inflation increases dramat-

ically with the horizon. Even if the forecast error is low over short horizons (1.7% for two

years), it increases to 17.5% at the 10-year horizon. This finding suggests a lack of mean

reversion in the inflation rate dynamics. This feature has been proposed in previous work

(Bekaert, Cho, and Moreno, 2010, for instance) and is usually captured by a random walk

inflation target in the monetary policy rule. In the model, we allow for an autoregressive

target and find the persistence parameter to be equal to ρπ̄ = 0.85. As the value is less

than unity, this parameter precludes an explosive dynamic. This approach works well for

up to five years but seems to be insufficient for longer horizons.

Regarding financial variables, we notice that the RMSE of the nominal short-term

interest rate is only slightly larger than the RMSE of inflation over all horizons. This

21



result suggests that monetary policy is rather well described by a Taylor-type rule, which

provides an anchor for the short-term rate to the output gap and inflation gap. The

forecast error for the nominal long-term rate is low in the short run and increases in

line with the short-term rate for long horizons. We also observe that the RMSE of the

real bond holding-period return is rather low, as it does not exceed 10% for the 10-

year horizon. This result suggests that both inflation risk and real interest-rate risk are

important for a long-term investor (Campbell and Viceira, 2002).

Finally, the RMSE is rather large for a firm’s financial variables: the forecast error at

the two-year horizon is larger than 20% for the real market value of equity and 40% for

real dividends. For real cumulative stock returns, the RMSE is as high as 24%. These

results are not particularly surprising given the high uncertainty surrounding stock return

forecasts. Even if the model can be considered to provide good overall forecasts, the

current version of the model does not account for stock market bubbles. Interestingly, we

observe that the RMSE stabilizes at approximately 35% after five years for the market

value of equity, dividends, and real stock returns. This finding is consistent with the

substantial mean reversion indicated by Siegel (1994), Barberis (2000), and Campbell

and Viceira (2002), among others.

3.4 Term Structure of Risks

To investigate the implications of the predictability of financial returns in a DSGE model

from an investor perspective and in greater depth, we now consider the relative levels

of risk of financial assets at various horizons. As demonstrated by Siegel (1994) and

Campbell and Viceira (2002), an important implication of stock return predictability in

the long run is that the annualized standard deviation of stock returns tends to decrease

as the horizon increases. In contrast, the volatility of bond returns tends to increase with

the horizon.9

9The decrease in stock return volatility in the long run has been recently questioned by Pastor and
Stambaugh (2009), who argue that the negative effect of mean reversion on long-run volatility is more
than offset by the uncertainty about future expected returns and parameter uncertainty.
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We consider three asset classes: cash, bonds, and stocks. Investment in bonds is based

on a “rolled” strategy in constant-maturity bonds: the bond portfolio is rebalanced in

each period to keep the maturity constant over time. The investor buys a 10-year bond at

the beginning of the quarter and sells it at the end of the quarter. Then, at the beginning

of the next quarter, she buys a (possibly new) 10-year bond for one quarter. The bond

position is, therefore, assumed to be rolled over time with quarterly rebalancing.10 We

denote the vector of log returns by zt+1 = (ρ1,t+1, ρb,t+1, ρs,t+1)′, where ρ1,t+1 is the ex-

post real one-period interest rate, ρb,t+1 is the ex-post real holding-period return for a

10-year bond, and ρs,t+1 is the ex-post real stock return. The distribution of the k-period

cumulative return, Zt[k] = zt+1 + · · ·+ zt+k, is given by:

Zt[k] ∼ N(µZ,t[k],ΣZ [k]),

where

µZ,t[k] = kΦ̃0 + Φ̃1(G+ · · ·+Gk)ŝt,

ΣZ [k] = Φ̃1DΦ̃′1 + Φ̃1(I +G)D(I +G)′Φ̃′1 + · · ·

+Φ̃1(I +G+ · · ·+Gk−1)D(I +G+ · · ·+Gk−1)′Φ̃′1.

The term Φ̃0 = HzΦ0 contains the long-term values of the real log returns, Φ̃1 = HzΦ1,

and Hz is the selection matrix that selects the vector of real log returns, zt, from the

observables. Finally, we compute the annualized variance of the k-period cumulative

return as (1/k)ΣZ [k].

Figure 3 plots the annualized standard deviations of real returns for short-term

bonds, long-term bonds, and stocks for investment horizons up to 120 quarters, i.e., 30

years. The figure clearly shows that the risk of rolled long-term bonds and stocks decreases

with the investment horizon. The annualized standard deviation of rolled bonds decreases

from 8.5% for a one-quarter horizon to less than 6% for a 30-year horizon. Similarly,

10Alternatively, the investor could buy a k-year bond and holds it until its maturity at date t + k
(“variable-maturity” strategy). From a dynamic allocation perspective, the rolled strategy makes more
sense, whereas the variable-maturity strategy would be more relevant to a buy-and-hold strategy. For
this reason, we focus on the rolled strategy in the following section.
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the volatility of stock returns is highest at the shortest horizon (one quarter) and then

continuously decreases from 14.8% to 12% over a 30-year horizon. From an investment

strategy perspective, this result implies that rolled bonds and stocks are relatively safer

over longer horizons; thus, a longer-horizon investor should allocate relatively more to

bonds and stocks than a short-horizon investor (Barberis, 2000). Regarding the short-

term bond, we find that the risk continuously increases with the investment horizon,

from 1% to 5%. This pattern reflects the increase in inflation risk for long horizons and

therefore weak mean reversion in inflation. This result is broadly consistent with the

evidence reported by Campbell and Viceira (2002) for a different period.

4 Optimal Dynamic Strategy

We now investigate the optimal dynamic investment policy of a long-term institutional

investor who uses a DSGE model to predict future asset returns. Dynamic strategies take

into account changes in investment opportunities, such that the portfolio is, in principle,

rebalanced in an optimal manner at specified regular intervals. Because the investor

wishes to hedge the portfolio against adverse changes in the investment set, the strategy

gives rise to intertemporal hedging demands (Merton, 1973).

One difficulty encountered with dynamic strategies is that, generally, no closed-form

solution exists. See Kim and Omberg (1996) and Wachter (2002) for exact analytical so-

lutions to continuous-time intertemporal portfolio-choice problems and Bodie, Detemple,

and Rindisbacher (2009) and Wachter (2010) for recent surveys on dynamic allocation.

In discrete time, some solutions to this problem based on numerical techniques (Barberis,

2000; Lynch, 2001) or analytical approximations of the solution (Campbell and Viceira,

1999, 2001, 2002; Campbell, Chan, and Viceira, 2003) have been proposed. For instance,

Barberis (2000) considers the case of a single asset with no intermediate consumption

and simulates the path of the state variables over the investment horizon by using a

discretization scheme.

We consider an institutional investor with Epstein and Zin (1989) recursive preferences

and follow the approximate analytical solution provided by Campbell and Viceira (1999,
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2001) and Campbell, Chan, and Viceira (2003). The institutional investor can be, for

instance, an insurance company, a pension fund, a sovereign wealth fund, an endowment,

or a charity, with a long-term horizon and a regular payout to be made. This framework

is well suited for evaluating dynamic investment strategies. Preferences are described as:

U(Ot, Et[Ut+1]) = [(1− β)O
(1−γ)/θ
t + β(Et[U

1−γ
t+1 ])1/θ]θ/(1−γ),

where Ot as the net outflow that has to be made by the investor in every period, γ > 0 is

the relative risk aversion coefficient, ψ > 0 is the elasticity of intertemporal substitution,

and θ = (1−γ)/(1−ψ−1). Epstein-Zin utility simplifies to the power utility when γ = ψ−1

and to the log-utility when γ = ψ−1 = 1. The intertemporal budget constraint is:

Wt+1 = (Wt −Ot)ρp,t+1,

where ρp,t+1 = ρ1,t+1 + αb,t(ρb,t+1 − ρ1,t+1) + αs,t(ρs,t+1 − ρ1,t+1) is the real portfolio re-

turn, with αb,t and αs,t denoting the fraction of wealth invested in bonds and stocks,

respectively.11

Under such preferences, Campbell and Viceira (1999) provide an approximate optimal

solution based on the log-linear approximation of the Euler equation and the intertempo-

ral budget constraint. Then, the dynamic optimization problem is solved and the optimal

portfolio and outflow are shown to be linear in the state variables, ŝt:

αt = A0 + A1ŝt, (10)

ot − wt = b0 +B′1ŝt + ŝ′tB2ŝt. (11)

The optimal portfolio rule has two components: a myopic component, which corresponds

to the one-period optimal allocation, and an intertemporal hedging portfolio, which ac-

counts for movements in expected returns. Campbell, Chan, and Viceira (2003) demon-

11As Figure 3 shows, the one-period return ρ1,t+1 is not risk free at long horizons, but, for convenience,
it is still used to define excess returns in this expression.
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strate that the coefficient matrices A0 and A1 for the optimal portfolio are:

A0 =
1

γ
Σ−1
xx

[
HxΦ0 +

1

2
σ2
x + (1− γ)σ1x

]
+

(
1− 1

γ

)
Σ−1
xx

(
− Λ0

1− ψ

)
,

A1 =
1

γ
Σ−1
xxHxΦ1 +

(
1− 1

γ

)
Σ−1
xx

(
− Λ1

1− ψ

)
,

where Hx is the selection matrix that selects the vector of excess returns (ρb,t+1 − ρ1,t+1,

ρs,t+1 − ρ1,t+1) from the state vector, Σxx is the covariance matrix of excess returns,

σ2
x = diag(Σxx) is the vector of variances of excess returns, and σ1x is the covariance

between the one-period rate and the excess returns. Vectors Λ0 and Λ1 are related to

the covariance of the assets and the outflow growth. They are defined in the appendix of

Campbell, Chan, and Viceira (2003).

The first terms in A0 and A1 correspond to the myopic component, which is the

solution to the mean-variance allocation problem when excess returns are predictable.

The first term of A1 takes the prediction of excess returns into account as long as Φ1 6= 0.

The second terms in A0 and A1 correspond to the intertemporal hedging demands. They

appear in the optimal portfolio weights as long as γ 6= 1 and depend on the ability of

the assets to hedge the investor against the deterioration of consumption growth. When

γ = ψ = 1 (log-utility), the hedging demands vanish. Campbell, Chan, and Viceira

(2003) show that ψ is essentially irrelevant for the determination of the optimal portfolio

rule, although it directly drives the optimal outflow rule. In our experiments, we indeed

observe that for a given value of γ, altering ψ does not affect the optimal allocation rule.

In the empirical application, we follow Campbell, Chan, and Viceira (2003) and focus on

the case ψ = 1. In this case, the choice of the outflow ct is myopic because the outflow-

wealth ratio ot − wt is constant, whereas the optimal portfolio rule is not myopic. The

solution would be fully myopic in the log-utility case only.

As a first step of our analysis of the optimal strategy of a DSGE investor, we consider

the total demands for stocks and bonds and their myopic and hedging components. Fig-

ure 4 shows that the optimal demands are very similar when the model is estimated up

to 1999Q4 or up to 2010Q4. Thus, even if the parameters of the DSGE model vary over
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time, this variability does not significantly alter the investment strategy of the investor.

The figure shows that the allocation to stocks is a concave function of risk tolerance

(1/γ), as in Campbell, Chan, and Viceira (2003), with a very similar decomposition in

its myopic and hedging components. The hedging demand is always positive and is the

highest for intermediate levels of risk tolerance: it is as high as 50% for risk aversion

levels between 2 and 4, and then decreases to nearly 0 for infinitely risk averse investors.

Regarding the allocation to bonds, a different picture from that presented in Campbell,

Chan, and Viceira (2003) emerges: hedging demands increase as risk aversion increases.

For an infinitely risk-averse investor, the optimal portfolio is almost entirely composed of

bonds, with a hedging demand for bonds of 95%.

To investigate the role of the risk premia in the optimal allocation in greater detail, we

now consider data for the last date in the sample. In the last quarter of 2010, the DSGE

model estimates a stock premium of 7% and a bond premium of −0.5% per year. These

numbers correspond to the premia reported in Figure 2 (1.75% and −0.12% per quarter

for stock and bond premia, respectively). Figure 5 (Panel A) corresponds to deviations

from the current stock premium (from 7% to 0% and 10%) when the bond premium is

at its current value (−0.5%). As the figure shows, as the stock premium increases, the

allocation to stocks also increases. The highest hedging demand is 25% when the stock

premium is 0% and 50% when the premium increases to 10% (in both cases, for γ = 2).

We also notice that the allocation to bonds decreases from 30% to 11% when the stock

premium increases from 0% to 10%. This result is consistent with the positive correlation

of bond returns with the stock premium and indicates that bonds are poor hedges against

stock risk.

Panel B corresponds to deviations from the current bond premium (from −0.5% to

−2% and 2%) when the stock premium is at its current value (7%). Interestingly, changes

in portfolio weights are much more contrasted than for a change in the stock premium.

For a negative premium, we find that the allocation to bonds becomes negative for low

levels of risk aversion but that it may be positive and relatively high for highly risk-averse

investors. Similar results are reported by Campbell, Chan, and Viceira (2003) for stocks
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and Sangvinatsos and Wachter (2005) for bonds in the case of long-term investors. As

bond returns are negatively correlated with the bond premium, a negative bond premium

induces a negative bond holding, which can be as high as −20% for γ = 2. However,

long-term investors know that the bond premium is positive, on average, and thus expect

the risk premium to return to its long-run value in the future. Therefore, risk-averse

investors still hold long positions in bonds (for γ > 5). As the bond premium increases,

the allocation to bonds increases accordingly. For a premium of 2%, the hedging demand

is as high as 100% for large risk aversion parameters. Regarding the allocation to stocks,

we find that, as the bond premium increases, the fraction of wealth invested in stocks

increase, although this effect is relatively limited.

5 Out-of-sample Performances

We compare the optimal allocation performance of a DSGE investor with that of an

investor using an unrestricted VAR(1) model to predict future asset returns, as in Camp-

bell, Chan, and Viceira (2003). The VAR model is composed of the following variables,

with the same notations as in equation (8): real GDP growth (∆yt), real consump-

tion growth (∆ct), real investment growth (∆ιt), hours growth (∆ht), wage inflation

(∆wpt), price inflation (πt), the federal funds rate (r1,t), long-term versus short-term

spread (spt = yb,t − r1,t), long-term holding-period excess returns (xb,t = rb,t − r1,t,

where rb,t = log(1 + Rb,t)), real stock returns (ρs,t), and the log dividend-price ratio

(dprt = vpt − dpt).12 The DSGE model can be viewed as a restricted VAR(1) process,

which incorporates all the restrictions imposed by the macro-financial mechanisms of

the model. Thus, we expect the unrestricted VAR to perform better than the DSGE

model in the short run because it provides the best fit for the next period. The VAR(1)

model could still outperform the DSGE model in the long run if the economic restrictions

turn out to be irrelevant. However, if the economic restrictions that are imposed in the

12Some differences exist in the selection of the variables between the VAR model and the DSGE model:
namely, hours are introduced in differences to prevent nonstationarity of the system; similarly, the long-
term rate and holding-period returns on government bonds are in excess to the risk-free rate; finally, the
log dividend-price ratio is introduced following the approach of Barberis (2000).
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DSGE model are relevant, the VAR model may not perform as well as the DSGE model.

The parameter estimates of the VAR model are reported in Table 6. The table reveals

that some predictability in bond and stock returns exists at a quarterly frequency, with

adjusted R2 values equal to 20% and 15%, respectively.

The RMSE of the variables of interest for the VAR model are reported in Table 7.

Comparison of theVAR model with the DSGE model reveals that the models have a

similar performance in forecasting macro variables, even over long horizons. However,

the DSGE model performs better in forecasting financial returns over long horizons.

The VAR model performs relatively poorly in forecasting real stock returns in the long

term. Over two- and five-year horizons, the VAR model performs as well as the DSGE

model. However, over the 10-year horizon, the RMSE for the VAR model increases to

42% (against 36.8% for the DSGE model). The better performance of the DSGE model

is even more pronounced for real bond returns. The RMSE of the DSGE model only

slowly increases as the horizon increases (from 6% for two years to 8% for 10 years),

while the RMSE of the VAR model dramatically increases from 8% for two years to

22% for 10 years. This empirical evidence is consistent with the notion that imposing

economic restrictions improves stock return predictions. See, for instance, Campbell and

Thompson (2008), Cochrane (2008), and Ferreira and Santa-Clara (2011), who develop

this argument in a regression context. In our context, although the unrestricted VAR

model performs as well as the DSGE model in the short run, it clearly underperforms the

DSGE model in the long run with respect to forecasting real bond holding-period returns

and stock returns.13

These results are confirmed by the term structure of risks that is estimated using

the VAR model, as shown in Figure 6 for 2010Q4. We find that in contrast to the

results for the DSGE model, the annualized volatility of stocks does not decrease with

the investment horizon in the VAR model, indicating that mean reversion in stock returns

is weaker in the VAR model. The volatility of rolled long-term bonds exhibits some mean

reversion, but it decreases much more slowly in the VAR model than in the DSGE

13Campbell and Thompson (2008) also show that even a relatively small improvement in prediction
can result in meaningful utility gains for investors.
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model. If we focus specifically on a medium term such as 10 years, which will be our

benchmark for the performance evaluation, the picture is rather different between the

DSGE and the VAR models. The annualized volatilities of cash, bonds, and stocks are

4%, 4.75%, and 12.5%, respectively, for the DSGE model, and 4%, 6.75%, and 16.5%,

respectively, for the VAR model. Interestingly, we find that, in the model with economic

restrictions, annualized volatilities decrease with the investment horizon, as suggested by

Siegel (1994) and Campbell and Viceira (2002). In contrast, in the unrestricted model,

annualized volatilities do not decrease, as established by Pastor and Stambaugh (2009).

These results clearly confirm that imposing economic restrictions in a forecasting model

is beneficial for long-term investors. We now turn to this issue.

We now evaluate the out-of-sample performance of the DSGE and VAR models from

a long-term investment perspective. Even if investors are supposed to be infinitely long

lived, the out-of-sample performance of the optimal portfolio allocation can be evaluated

for finite horizons only. Over our full sample, we use the first 35 years (1955-89) for

the first estimation of the (DSGE and VAR) models and the sample for the period from

1990 to 2010 for the performance evaluation. We proceed as follows: for the cohort of

investors who begin to invest in 1990Q1, we estimate the model over the 1955-1989 pe-

riod and determine the optimal rule (Equation (10)) by using available data only. Then,

every quarter from 1990Q1 to 2010Q3, we compute the optimal weights of their portfo-

lios conditional on the available state variables. Finally, once asset returns are observed,

we compute the ex-post portfolio return, from which we evaluate the out-of-sample per-

formance of the investment rule. For the 1990Q1 cohort, we have 83 optimal portfolio

weights and therefore 83 ex-post portfolio returns. We then move to the next cohort

of investors, who begin to invest in 1990Q2, and proceed similarly. For the last cohort

(2010Q3), only one optimal allocation and one ex-post portfolio return are available.

As the various cohorts use different estimates of the models, the investment rules and,

consequently, the ex-post performances differ from one cohort to the other.

In Table 8 (Panels A and B), we report the average portfolio weights for stocks and

bonds for the DSGE and VAR models. For instance, for the 5-year horizon, we average
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the optimal portfolio weights of the cohorts from 1990Q1 to 2005Q3. In doing so, we

avoid overreliance on a specific period, as we average the behavior of different cohorts

over time. Over a short horizon, the optimal DSGE portfolio has positive weights, on

average, for both stocks and bonds. For longer horizons, however, the this portfolio is

short in stocks. In contrast, the optimal VAR portfolio has a large fraction invested in

stocks and a small fraction (even negative for a long horizon) invested in bonds. This clear

difference between the optimal DSGE and VAR portfolios can be explained as follows. As

noted above, the DSGE model provides much better forecasts of long-term bond returns

than the VAR model; thus, investors’ perceived risk on long-term bonds is much lower.

Although the DSGE model is also better at reducing the uncertainty surrounding stock

returns than the VAR model, the decrease in risk is relatively less pronounced. As a

consequence, the myopic demand is positive for bonds and negative for stocks for the

DSGE investor and negative for bonds and positive for stocks for the VAR investor. In

addition, as discussed in the previous section, in the DSGE model, the large hedging

demands are high for long-term bonds, owing to their ability to hedge changes in the

bond risk premium, and relatively limited for stocks. In fact, the hedging demand for

bonds is almost entirely financed by a negative hedging demand for cash, which has a

large positive correlation with the bond premium and does help with hedging this source

of risk.

The difference in portfolio weights between the DSGE and VAR investors can be

visualized in Figure 7, which shows the average portfolio weights for a given date across

all the cohorts that invest on that date (with γ = 20). For instance, the weights for

2000Q1 correspond to the average of the weights for all the cohorts from 1990Q1 to

2000Q1 (assuming equal weights across cohorts). As Panel A clearly shows, the DSGE

investor always has a large fraction of wealth invested in long-term bonds. The investment

in stocks is more countercyclical: the weight on stocks decreases before the Internet

bubble burst and before the subprime crisis. These episodes correspond to periods with a

negative stock premium, as confirmed by Figure 2. The evolution of the hedging demands

indicates that the demands are high and positive for bonds and high and negative for
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cash. This result indicates that, in the DSGE model, investing in bonds is a good hedge

against changes in the bond risk premium. As Panel B shows, such a hedge is much

less pronounced for The VAR investor. The VAR model generates hedging (and total)

demands for bonds that are close to zero or even negative over certain periods of time,

whereas long-term investors are long in stocks over the entire sample period. The VAR

investor is not countercyclical in the allocation to stocks. In particular, she does not

reduce the allocation to stocks before the subprime crisis.

The out-of-sample performances of the dynamic strategies are also reported in Table

8. As can be seen in Panel C, the annualized (real) return of the DSGE portfolio is

positive for all horizons and all levels of risk aversion. For an horizon of 10 years, the

average real return is approximately 9.3% per year for low risk aversion (γ = 5), and

this value decreases to 5% for γ = 10 and 3% for γ = 20. The annualized volatility

is also relatively high, particularly for low risk aversion and long horizons (Panel D).

The Sharpe ratio ranges between 0.3 and 0.6, a relatively high range of values given the

limited investment set (Panel E).14

Turning to the VAR portfolio, we notice that the annualized return is low, and even

negative for low risk aversion and long horizon. This poor performance primarily occurs

because the VAR portfolio is long in stocks at the beginning of the subprime crisis,

whereas the DSGE portfolio has zero exposure to the stock market. A similar, although

less penalizing, situation occurred at the eve of the Internet bubble burst, when the

DSGE portfolio is short in stocks, whereas the VAR portfolio has zero exposure to the

stock market. As the annualized volatility is also relatively high for the VAR portfolio,

similar to the DSGE portfolio volatility, the Sharpe ratio of the VAR portfolio is found

to be very low for low and medium levels of risk aversion.

The main explanation for the performance difference between the DSGE and VAR

models is that the former is able to forecast long-term returns very well whereas the

14As returns are measured quarterly and the investment horizons are from 2 to 10 years, we must
compute the Sharpe ratio carefully. We follow Lo’s (2002) approach and recognize that returns are
not i.i.d. The Sharpe ratio for a k-year horizon is therefore defined as: SR(k) = SR(1)η(k), where

SR(1) = (ρ̄p−ρ̄1)/σp denotes the 1-quarter Sharpe ratio and η(k) = k/(k+2
∑k−1

i=1 (k−i)ϕi)
1/2 is the scale

factor that corrects for the fact that returns are not i.i.d. The approach involves ϕi = Cov(ρp,t, ρp,t−i)/σ
2
p

the i-th order serial correlation of real portfolio return, and σ2
p = V (ρp,t).
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latter is not. The optimal allocations of the VAR model are broadly consistent with

those reported by Campbell, Chan, and Viceira (2003), who find portfolios that are long

in stocks and short in bonds. In contrast, our DSGE portfolios are more in line with the

results obtained by Sangvinatsos and Wachter (2005), who allow for a better description

of the bond premium. A similar result is also reported by Koijen, Nijman, and Werker

(2010) but with much more limited hedging demands, owing to short sales restrictions.15

6 Conclusion

In this paper, we investigate the ability of a fully structural DSGE model to provide

forecasts of future asset returns over long horizons. The model describes the demand and

production sides of the economy to obtain the dynamics of the short-term interest rate (set

by the central bank), the long-term Treasury bond return, and the stock market return.

We also introduce rebalancing costs for risky financial assets, which allow us to generate

time-varying risk premia for bonds and stocks. The model shows good performance in

forecasting bond and stock returns over long horizons.

From a long-term allocation perspective, we find that the optimal portfolio should

be invested in bonds and stocks. For high risk aversion, however, the hedging demands

for bonds are much higher than the hedging demands for stocks, resulting in portfolios

that are mostly invested in bonds. In our out-of-sample allocation exercise, we find that

risk-averse investors will indeed mostly hold bonds. In contrast, when an unrestricted

VAR model is used to forecast returns, the optimal portfolio will favor stocks.

The DSGE model clearly outperforms the unrestricted VAR model for long-term

allocation. The main reason for this difference in performance is that the VAR model

does not forecast bond and stock returns well over the long term. Therefore, the out-

of-sample dynamic allocation experiment over the 1990-2010 period definitely favors the

15Another possible explanation for the overperformance of the DSGE allocation relative to the VAR
allocation is that the DSGE model likely mitigates estimation error, which is a well-known major issue
in portfolio management. In our context, the unrestricted VAR model involves the estimation of 187
parameters (autoregressive terms and the covariance matrix), whereas the DSGE model involves 48
parameters only. Empirical evidence clearly suggests that imposing theoretical restrictions is beneficial
(mitigation of estimation error) rather than detrimental (loss of information).
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DSGE model. The Sharpe ratios for the DSGE model are approximately 0.3–0.5 above

those for the Sharpe ratios. All these findings suggest that the use of a structural macro

model, by imposing long-run restrictions on financial returns, may be of value for long-

term investors, such as insurance companies, pension funds, and sovereign wealth funds.
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A Log-linearized Model

• Consumption demand (IS curve):

ĉt =
ζ/γ

1 + ζ/γ
ĉt−1 −

1

1 + ζ/γ
Etĉt+1 +

(σC − 1)(1− ζ/γ)ξ

σC(1 + ζ/γ)
(ĥt − Etĥt+1)

− (1− ζ/γ)

σC(1 + ζ/γ)
(Etρ̂s,t+1 − (1− ρv)v̂t − ςηv,t)

• Investment demand:

ι̂t =
1

1 + β̃
ι̂t−1 +

β̃

1 + β̃
Etι̂t+1 +

1

(1 + β̃)κI
(q̂t + ẑIt )

where β̃ = βηγ1−σC .

• Tobin’s q:

q̂t = (1− δ) β̃
ηγ
Etq̂t+1 +

(
1− (1− δ) β̃

ηγ

)
Etρ̂k,t+1 − Etρ̂s,t+1

• Shadow rental rate of capital:

ρ̂k,t = −(ût + k̂t−1 − ĥt) + ŵpt

• Price inflation (Phillips curve):

π̂t =
ηp

1 + β̃ηp
π̂t−1 +

β̃

1 + β̃ηp
Etπ̂t+1 −

1

(1 + β̃ηp)κp

(
ẑt − αρ̂k,t − (1− α)ŵpt − θ̂t

)
• Wage inflation:

π̂wt = ηwπ̂
w
t−1 + β̃

(
Etπ̂

w
t+1 − ηwπ̂t

)
− 1

κw

[
ŵpt −

(
σLĥt +

ĉt − (ζ/γ)ĉt−1

1− ζ/γ

)
− ψ̂t

]
where π̂wt = ŵpt − ŵpt−1 + π̂t.

• Capital accumulation:

k̂t =
1− δ
ηγ

k̂t−1 +

(
1− 1− δ

ηγ

)
ι̂t +

(
1− 1− δ

ηγ

)
(1 + β̃)κI ẑ

I
t
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• Production function:

ŷt = θ
[
ẑt + α(ût + k̂t−1) + (1− α)ĥt

]
• Capital utilization:

ût =
1

χ
ρ̂k,t

• Real dividends:

d̄p

ȳ
d̂pt = (1− τy)(1− τs)

[
ŷt − (1− α)(ŵpt + ĥt)

]
− ῑ

ȳ
ι̂t + τyδa

k̄

ȳ
k̂t−1 + Φ̂d,t

• Taylor rule of the central bank:

r̂f,t = ρrr̂f,t−1+(1−ρr)
[
aπ(π̂t − ˆ̄πt) + ay(ŷt − ŷnt ) + ag

(
(ŷt − ŷnt )− (ŷt−1 − ŷnt−1)

)]
+ε̂r,t

• Inflation target:

ˆ̄πt = ρπ̄ ˆ̄πt−1 + ςπ̄ηπ̄,t

• Nominal short-term return (asset pricing condition):

λ̂t = Etλ̂t+1 + Etρ̂1,t+1

• Real long-term bond return (asset pricing condition):

λ̂t = Etλ̂t+1 + Etρ̂
(k)
b,t+1 − φ̂

(k)
b,t

• Real stock return (asset pricing condition):

λ̂t = Etλ̂t+1 + Etρ̂s,t+1 − φ̂s,t

where ρ̂s,t = β̃v̂pt + (1− β̃)d̂pt − v̂pt−1 (dividend discount model).

• Goods market clearing condition:

c̄

ȳ
ĉt +

ῑ

ȳ
ι̂t +

ḡ

ȳ
ĝt = ŷt
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• Shocks:

v̂t = ρvv̂t−1 + ηv,t − ςvηv,t−1

ψ̂t = ρψψ̂t−1 + ηψ,t − ςψηψ,t−1

θ̂t = ρθθ̂t−1 + ηθ,t − ςθηθ,t−1

ẑt = ρz ẑt−1 + ηz,t − ςzηz,t−1

ẑIt = ρiẑ
I
t−1 + ηi,t − ςiηi,t−1

Φ̂d,t = ρdΦ̂d,t−1 + ηd,t − ςdηd,t−1

ĝt = ρgĝt−1 + ρg,zηz,t + ηg,t − ςgηg,t−1

ε̂r,t = ρr ε̂r,t + ηr,t − ςrηr,t−1

φ̂s,t = ρφ,sφ̂s,t−1 + ηφ,s,t − ςφ,sηφ,s,t−1

φ̂
(k)
b,t = ρ

(k)
φ,bφ̂

(k)
b,t−1 + η

(k)
φ,b,t − ς

(k)
φ,bη

(k)
φ,b,t−1.

B Data

Per-capita variables are computed using the U.S. population over 16 years of age. Real

variables are computed using the GDP deflator (NIPA Table 1.1.9). Observable variables

are defined as follows:

• Per-capita real GDP (∆ logGDPt) is the log-difference in GDP adjusted by popu-

lation and inflation (from NIPA Table 1.15, line 1).

• Per-capita real consumption (∆ logCONSt) is the log-difference in consumption

adjusted by population and inflation (from NIPA Table 1.15, line 2).

• Per-capita real investment (∆ log INVt) is the log-difference in investment adjusted

by population and inflation (from NIPA Table 1.15, line 7).

• Per-capita labor hours (logHRSt) is the log-difference in total labor hours adjusted

by population. Labor hours are defined as total employment multiplied by the

average workweek duration (from Current Employment Statistics).
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• Real wage rate (∆ logWAGEt) is the log-difference in hourly compensation rate in

nonfarm business adjusted for inflation (from the Bureau of Labor Statistics, BLS

Series id: PRS85006103).

• Inflation (∆ logPt) is the log-difference in the GDP deflator.

• Per-capita real market value of nonfinancial firms (∆ logCAPt) is computed as

liabilities (line 21) minus financial assets (line 6) plus the market value of equities

outstanding (line 35) per capita and in real terms (from Flow of Funds Account of

the United States, Table B.102).

• Per-capita real dividends of nonfinancial firms (∆ logDIVt). The series includes

net buybacks and net financial acquisitions, minus the net increase in financial

liabilities.

• The federal funds rate (FFRt) (from the FRED database).

• The long-term interest rate (LTRt) is the 10-year Treasury constant maturity yield

(from the FRED database).

We compute the holding period return of the k-period bond between t and t + 1 as

follows:

r
(k)
b,t+1 = D

(k)
t y

(k)
b,t − (D

(k)
t − 1) y

(k−1)
b,t+1 , (12)

where y
(k)
b,t = log(1 + LTR

(k)
t ) and D

(k)
t is Macaulay’s duration defined as:

D
(k)
t =

1− e−ky
(k)
b,t

1− e−y
(k)
b,t

' 1− (1 + LTR
(k)
t )−k

1− (1− LTR(k)
t )−1

. (13)

We use the approximation y
(k−1)
b,t+1 = y

(k)
b,t for large k.
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Table 1: Summary statistics on observable variables

Variable Annual. Annual. Persistence
mean std dev.

(×100) (×100)

Panel A: Macro variables

Change in real GDP ∆yt 1.68 3.70 0.32
Change in real consumption ∆ct 1.88 2.92 0.25
Change in real investment ∆ιt 1.42 18.96 0.21
Hours ht – 12.20 0.96
Change in real wages ∆wpt 1.62 2.39 0.06
GDP inflation πt 3.44 2.36 0.84
Panel B: Financial variables

Nominal short-term rate r1,t 5.34 3.21 0.96
Nominal long-term rate yb,t 6.19 2.47 0.97
Nominal bond holding period return rb,t 6.01 15.44 -0.03
Real bond holding period return ρb,t 2.56 15.64 0.01

Change in real market value of equity ∆vpt 2.44 30.16 0.05
Change in real dividends ∆dpt 2.48 46.80 0.17
Real stock return ρs,t 6.60 30.26 0.06

Note: The table reports the annualized mean, annualized standard deviation, and per-

sistence parameter (first-order autocorrelation) of the observable variables. The data is

quarterly from 1955 to 2010, for a total of 224 observations.

45



Table 2: Value of the calibrated parameters

Symbol Value

Average quarterly growth of the population η 1.0035
Average quarterly growth of per-capita output γ 1.0042
Trend inflation factor π 1.0086
Average (gross) nominal interest rate R1 1.0134

Adjusted time-discount factor β̃ 0.9935
Capital share parameter α 28.37%
Depreciation rate of capital δ 1.28%
Accounting depreciation rate δa 1.40%
Tax rate on firm income τy 31.5%
Tax rate on dividend income τd 21.5%
Tax rate on sales τs 8.9%
Tax rate on labor income τh 35%
Share of consumption c̄/ȳ 65.0%
Share of government expenditure ḡ/ȳ 19.1%
Share of investment ῑ/ȳ 16.0%
Share of dividends d̄p/ȳ 5.2%
Share of labor compensation in total income w̄p/ȳ 65.3%

Note: The table reports the value of the calibrated parameters. These values are drawn

from Alpanda (2013). The calibration is based on the data available over the 1955-2010

period.
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Table 3a: Parameter estimates of the DSGE model

Prior Posterior distribution Alpanda
Dist. Par.1 Par.2 Mean 5% 95% (2013)

ζ Habit beta 0.7 0.1 0.940 0.921 0.959 0.954
σC Consumption elasticity norm 1.5 0.37 1.014 0.917 1.106 0.995
σL Labor supply elasticity norm 2 0.75 2.587 1.619 3.511 2.497
ψ Wage Mark-up norm 1.5 0.12 1.614 1.434 1.799 1.609
θ Price Mark-up norm 1.5 0.12 1.698 1.580 1.814 1.707
χe Utilization elasticity beta 0.5 0.15 0.213 0.141 0.283 0.187
κew Adjustment cost - Wage beta 0.5 0.1 0.861 0.815 0.908 0.863
κep Adjustment cost - Price beta 0.6 0.1 0.815 0.771 0.859 0.782
κI Adjustment cost - Invest. norm 4 1.5 3.137 1.889 4.316 4.473
ηw Wage indexation beta 0.5 0.15 0.459 0.279 0.649 0.518
ηp Price indexation beta 0.5 0.15 0.193 0.084 0.297 0.200
ρr Taylor - smoothing beta 0.75 0.1 0.791 0.737 0.845 0.819
aπ Taylor - inflation norm 1.5 0.25 1.249 0.961 1.534 1.449
ay Taylor - output gap norm 0.12 0.05 0.118 0.066 0.168 0.071
ag Taylor - output growth norm 0.12 0.05 0.210 0.141 0.281 0.236
ρv AR term. Consumption beta 0.5 0.2 0.643 0.438 0.846 0.511
ρψ AR term. Wage mark-up beta 0.6 0.2 0.870 0.767 0.964 0.864
ρθ AR term. Price mark-up beta 0.5 0.2 0.936 0.904 0.970 0.941
ρz AR term. Productivity beta 0.5 0.2 0.969 0.952 0.988 0.974
ρI AR term. Investment beta 0.6 0.2 0.998 0.998 0.998 0.996
ρg AR term. Government beta 0.5 0.2 0.984 0.976 0.992 0.985
ρr AR term. Monetary beta 0.5 0.2 0.502 0.253 0.749 0.579
ρd AR term. Dividend beta 0.5 0.2 0.952 0.931 0.973 0.947
ρg,z Cross-corr. Gvt-Prod. beta 0.5 0.2 0.675 0.445 0.923 0.685
ρb AR term. Bond risk beta 0.5 0.2 0.958 0.935 0.982 –
ρs AR term. Stock risk beta 0.5 0.2 0.816 0.777 0.852 0.824
ρπ̄ AR term. Target inflation beta 0.5 0.2 0.853 0.736 0.952 –
ςv MA term. Consumption beta 0.5 0.2 0.488 0.263 0.697 0.460
ςψ MA term. Wage mark-up beta 0.5 0.2 0.815 0.677 0.948 0.802
ςθ MA term. Price mark-up beta 0.5 0.2 0.895 0.839 0.954 0.893
ςz MA term. Productivity beta 0.5 0.2 0.070 0.012 0.121 0.063
ςI MA term. Investment beta 0.5 0.2 0.884 0.815 0.951 0.927
ςg MA term. Government beta 0.5 0.2 0.047 0.007 0.082 0.048
ςr MA term. Monetary beta 0.5 0.2 0.566 0.233 0.899 0.428
ςd MA term. Dividend beta 0.5 0.2 0.069 0.013 0.119 0.069
ςb MA term. Bond risk beta 0.5 0.2 0.458 0.195 0.702 –
ςs MA term. Stock risk beta 0.5 0.2 0.192 0.039 0.335 0.184
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Table 3b: Estimates of the standard deviation of shocks (×100)

Priors Posterior distribution Alpanda
Dist. Par.1 Par.2 Mean 5% 95% (2013)

ηv Consumption invg 0.005 Inf 10.63 7.60 13.51 0.31(∗)

ηψ Wage invg 0.005 Inf 0.49 0.43 0.55 0.49
ηθ Price invg 0.005 Inf 0.21 0.18 0.24 0.17
ηz Productivity invg 0.005 Inf 0.49 0.45 0.53 0.49
ηI Investment invg 0.005 Inf 1.55 1.29 1.81 1.64
ηg Government invg 0.005 Inf 1.93 1.78 2.08 1.93
ηr Monetary invg 0.005 Inf 0.17 0.15 0.19 0.20
ηd Dividend invg 0.005 Inf 0.79 0.72 0.85 0.79
ηb Bond premium invg 0.005 Inf 0.53 0.29 0.76 –
ηs Stock premium invg 0.005 Inf 1.37 1.01 1.71 1.42
ηπ̄ Target inflation invg 0.005 Inf 0.28 0.17 0.39 –

Note: The table reports the information about the prior and posterior distributions of

the parameters. For the prior distribution, the table indicates the class of distribution

and its two characteristic parameters. For the posterior distribution, the table reports

the mean and the 5%–95% confidence interval. The acronyms “beta”, “norm.”, and

“invg” stand for the beta, the normal, and the inverse gamma distributions. (∗) We have

rescaled consumption shock for readability purpose, so that its standard deviation is not

comparable to the one reported by Alpanda (2003).
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Table 4: Correlations between asset returns and risk premia in the DSGE model

Short-term Bond Stock
interest rate risk risk

premium premium premium

Panel A: 1955-1989

Cash return 0.397 0.671 -0.487
Bond return -0.280 -0.093 0.143
Stock return -0.215 -0.094 -0.162
Panel B: 1990-2010

Cash return 0.279 0.306 -0.617
Bond return 0.326 -0.380 0.104
Stock return -0.043 0.091 -0.448

Note: The table reports the correlations between asset returns and risk premia in the

DSGE model, over the subsamples 1955-89 and 1990-2010.
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Table 5: RMSE – DSGE model

Forecast horizon
2 years 5 years 10 years

Panel A: Macro variables

Output 3.43 5.41 3.15
Consumption 2.73 4.75 7.42
Investment 18.97 33.01 21.62
Hours 2.88 3.71 3.07
Real wages 3.64 7.26 6.73
Inflation (cumulative) 1.72 6.17 17.52
Panel B: Financial variables

Short-term rate (nominal) 2.73 7.73 18.19
Long-term rate (nominal) 1.51 4.96 14.46
Bond holding period return (real) 6.09 6.29 8.16

Market value of equity (real) 24.71 33.20 37.08
Dividends (real) 42.45 47.34 34.78
Stock returns (real) 24.19 33.38 36.76
Nb of observations 76 64 44

Note: The table reports the percent RMSE (root mean square error) for the observable

variables over the 2, 5, and 10-year horizons in the DSGE model.
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Table 6: Parameter estimates of the unrestricted VAR(1) model

∆yt ∆ct ∆ιt ∆ht ∆wpt πt r1,t spb,t xb,t ρs,t dprt R2

Panel A: Parameter estimates
∆yt+1 -0.26 0.37 0.04 0.15 0.05 0.00 -0.13 0.70 -0.06 0.02 0.00 0.35

(1.29) (2.18) (1.14) (1.02) (0.32) (0.02) (1.05) (3.01) (3.65) (1.62) (1.67)
∆ct+1 0.04 -0.10 0.02 0.01 0.03 -0.23 0.06 0.73 -0.05 0.02 0.00 0.35

(0.25) (0.76) (0.70) (0.10) (0.24) (2.02) (0.56) (3.89) (3.94) (2.48) (1.47)
∆ιt+1 -2.10 3.29 0.22 1.30 0.45 1.50 -0.77 2.92 -0.23 0.06 -0.01 0.34

(2.04) (3.86) (1.38) (1.80) (0.62) (2.10) (1.20) (2.51) (2.72) (1.33) (0.48)
∆ht+1 -0.22 0.42 0.05 0.09 0.00 -0.02 0.07 0.59 -0.05 0.00 0.00 0.44

(1.62) (3.74) (2.26) (0.97) (0.05) (0.25) (0.79) (3.86) (4.41) (0.48) (1.24)
∆wpt+1 0.18 -0.17 -0.03 0.13 0.26 0.03 -0.17 -0.22 0.01 0.01 0.00 0.15

(1.26) (1.43) (1.19) (1.27) (2.59) (0.33) (1.89) (1.36) (0.78) (2.22) (1.05)
πt+1 -0.13 0.16 0.01 0.04 0.12 0.86 0.04 -0.11 -0.01 0.00 0.00 0.82

(1.77) (2.53) (0.98) (0.84) (2.32) (16.5) (0.91) (1.34) (1.65) (0.76) (0.46)
r1,t+1 -0.02 0.09 0.00 0.11 0.06 0.13 0.95 0.12 -0.03 0.00 0.00 0.94

(0.45) (2.05) (0.22) (2.84) (1.66) (3.47) (29.0) (1.95) (6.20) (0.35) (0.42)
spb,t+1 0.02 -0.09 0.00 -0.10 -0.06 -0.13 0.04 0.92 -0.01 0.00 0.00 0.77

(0.33) (2.05) (0.22) (2.72) (1.65) (3.51) (1.35) (15.7) (2.95) (0.38) (0.36)
xb,t+1 -0.15 -0.02 -0.01 -0.93 0.49 -2.37 2.32 4.36 -0.18 -0.09 0.01 0.20

(0.15) (0.03) (0.09) (1.34) (0.71) (3.47) (3.80) (3.92) (2.26) (2.03) (1.10)
ρs,t+1 3.32 -2.83 -0.38 -2.87 -1.41 -2.11 0.11 2.33 0.32 -0.03 0.02 0.15

(1.80) (1.85) (1.35) (2.22) (1.10) (1.65) (0.10) (1.12) (2.12) (0.32) (0.61)
dprt+1 -2.31 1.52 0.17 1.54 -1.20 3.13 -0.31 6.32 -0.70 0.08 0.97 0.86

(0.91) (0.72) (0.43) (0.86) (0.67) (1.76) (0.19) (2.20) (3.39) (0.68) (27.6)
Panel B: Correlation matrix of residuals
∆yt 1 0.58 0.72 0.48 0.00 -0.22 0.05 -0.03 -0.04 0.01 0.37
∆ct – 1 0.03 0.30 0.19 -0.29 0.03 -0.02 0.00 0.08 0.07
∆ιt – – 1 0.40 -0.07 -0.02 0.07 -0.06 -0.01 -0.10 0.34
∆ht – – – 1 -0.36 -0.02 0.17 -0.16 -0.09 0.00 0.13
∆wpt – – – – 1 -0.27 -0.06 0.06 0.11 0.03 -0.16
πt – – – – – 1 0.09 -0.10 -0.01 -0.09 -0.01
r1,t – – – – – – 1 -0.98 -0.04 -0.09 -0.06
spb,t – – – – – – – 1 0.06 0.09 0.07
xb,t – – – – – – – – 1 -0.13 -0.02
ρs,t – – – – – – – – – 1 -0.58
dprt – – – – – – – – – – 1

Note: The table reports the parameter estimates (Panel A) and the correlation matrix of

residuals (Panel B) for the unrestricted VAR(1) model. Numbers in parentheses represent

the t-stat of the parameter estimates. We use the notations spb,t = yb,t − r1,t, xb,t =

rb,t − r1,t, and dprt = dpt − vpt.
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Table 7: RMSE – Unrestricted VAR(1) model

Forecast horizon
2 years 5 years 10 years

Panel A: Macro variables

Output 3.28 5.25 6.03
Consumption 2.98 4.95 5.65
Investment 16.42 24.01 32.90
Hours 2.73 3.91 6.23
Real wages 2.96 5.72 4.31
Inflation (cumulative) 2.69 7.74 18.15
Panel B: Financial variables

Short-term rate (nominal) 2.94 9.60 22.18
Long-term rate (nominal) 1.48 5.75 16.75
Bond holding period return (real) 8.33 11.56 22.30

Dividend - equity ratio 33.47 42.72 49.80
Stock returns (real) 21.72 33.91 42.36
Nb of observations 76 64 44

Note: The table reports the percent RMSE (root mean square error) for the observable

variables over the 2, 5, and 10-year horizons in the unrestricted VAR(1) model.
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Table 8: Out-of-sample performance of dynamic strategies

Risk DSGE model Unrestricted VAR(1) model
aversion Investment horizon Investment horizon

(γ) 2 years 5 years 10 years 2 years 5 years 10 years

Panel A: Average weight for stocks

5 0.39 -0.36 -1.38 1.82 1.98 1.83
10 0.24 -0.13 -0.64 0.94 1.02 0.90
20 0.14 -0.04 -0.29 0.47 0.50 0.43
50 0.08 0.01 -0.09 0.17 0.18 0.14

Panel B: Average weight for bonds

5 1.99 2.12 2.14 -0.46 -1.20 -1.51
10 1.52 1.58 1.57 0.10 -0.37 -0.66
20 1.20 1.22 1.19 0.45 0.15 -0.06
50 0.97 0.96 0.92 0.69 0.50 0.38

Panel C: Annualized real return

5 7.81 8.15 9.29 0.39 -0.30 -0.47
10 4.37 4.50 5.00 0.07 -0.20 -0.03
20 2.69 2.75 3.02 0.44 0.28 0.41
50 1.67 1.68 1.83 0.71 0.62 0.73

Panel D: Annualized volatility

5 37.70 38.47 41.11 39.59 38.77 34.77
10 20.19 20.62 22.14 21.90 20.88 17.69
20 10.96 11.11 11.82 11.34 10.65 8.79
50 5.55 5.49 5.60 5.20 4.79 4.03

Panel E: Sharpe ratio

5 0.38 0.47 0.34 0.02 0.00 0.01
10 0.41 0.50 0.33 0.01 0.00 0.04
20 0.47 0.54 0.39 0.09 0.07 0.14
50 0.58 0.64 0.60 0.26 0.26 0.34

Note: The table reports the average optimal weight for stocks and bonds and statistics

on ex-post performances of the dynamic investment strategies based on the DSGE and

the unrestricted VAR(1) models. Return and volatility are in annualized percent.
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Figure 1: Observable data
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Figure 2: Bond and stock premia
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Figure 3: Annualized volatility of real returns – DSGE model (as of 2010Q4)
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Figure 4: Optimal portfolio weights
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Figure 5: Hedging demands (allocation at end of 2010)
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Figure 6: Annualized volatility of real returns – VAR(1) model (as of 2010Q4)
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Figure 7: Average portfolio weight for a 10-year horizon
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