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Abstract

This paper documents a strong connection between payment system and credit supply. The

dual role of deposits as financing instruments for banks and means of payment for the rest of

the economy implies liquidity spillover effects of bank lending. After loans are financed by

new deposits, the deposit holders’ payments cause reserves and deposits to flow from the lend-

ing bank to the payees’ banks. We model a linear-quadratic game of bank lending on a random

graph of payment flows. Network topology determines the money multiplier that connects the

liquidity in the banking system (i.e., reserves) and the creation of credit and deposits. We quan-

tify the liquidity percolation in payment system using transaction-level data and structurally

estimate the network effects. Network externalities distort the money-multiplier mechanism,

reducing the level of aggregate credit supply by 9% on average and amplifying the volatility

by 20%. A small subset of banks are critically positioned in the network and are systemically

important as their shocks have a disproportionately large influence on aggregate credit supply.
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1 Introduction

Payment systems are central to the financial system. In 2020, the average weekly volume settled

through Fedwire, the major U.S. payment system, exceeded U.S. annual GDP. The dual role of

deposits as financing instruments for banks and means of payment for the rest of the economy im-

plies an intrinsic connection between credit supply and payment activities. While such connection

has been key to the traditional concept of money multiplier, the mechanism of liquidity percolation

in the payment system and quantitative implications on bank lending are still not well understood.

This paper provides the first evidence on how the network topology of payment flows affects

credit supply. Our structural model starts from a simple observation: After a bank finances its

lending with new deposits, the deposit holders may make payments, causing reserves and deposits

to flow from the lending bank to the payees’ banks. This suggests banks’ lending decisions are

strategic complements because one bank’s lending and its post-lending liquidity (reserve) outflow

due to payment settlement improve the liquidity condition of the payees’ banks. However, as the

payees receive payments and build up liquidity (deposit) holdings, their demand for credit from

their banks declines. This suggests banks’ lending decisions can also be strategic substitutes.

These two opposing forces arise from the two-layer design of payment system: Payment

settlement between depositors (i.e., an electronic transfer of deposits) requires interbank transfer

of reserves (Kahn and Roberds, 2007; Piazzesi and Schneider, 2016).1 When a depositor receives

a payment, she receives liquidity (deposits) and her bank receives liquidity (reserves) as well.

Through payment flows, liquidity is redistributed among banks and their customers. Banks

are connected when their depositors transact with each other. Shocks to one bank’s incentive to

1While payment systems differ in netting efficiency, overdraft standards, and bilateral credit lines (Kahn and
Roberds, 1998; Freixas and Parigi, 1998; Bech and Garratt, 2003), banks ultimately settle payments with reserves.
The process can be viewed as the deposit holders withdrawing cash to pay and her payee depositing cash into the
payee’s bank. The lending bank loses reserves and deposits, while the payee’s bank gains reserves and deposits.
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lend are propagated through the payment network. Depending on the network topology, shocks to a

subset of banks may have a disproportionately large impact on aggregate credit supply. We estimate

the network externalities and identify banks of systemic importance in driving credit supply.

The strategic interaction in banks’ lending decisions is modelled through a linear-quadratic

game on a random graph of payment flows. When a bank chooses loan volume, it takes into account

the randomness in both payment outflows (reserve and deposit reductions) due to its depositors’

payments and inflows (reserve and deposit additions) due to other banks’ lending. The former

necessitates reserve holdings as liquidity buffer while the latter generates spillover effects. Through

a quadratic profit function, the first and second moments of payment flows enter into banks’ lending

decisions, summarizing the probability distribution of the random graph of payment flows. Under

the quadratic objective function, bank i’s lending (best response) is linear in bank j’s lending. The

coefficient of spillover effect can be decomposed into a network effect parameter, ϕ, and the ij-th

element of a network adjacency matrix given by the first and second moments of payment flows.

In our structural estimation, we quantify the probability distribution of reserve and deposit flows

across banks using data from Fedwire, the major real-time payment settlement system in the U.S..

Under the two-layer design of payment system, payment outflows cause both the bank and

its customer to lose liquidity, i.e., reserve loss for the bank and deposit loss for its customers. The

bank incurs an increasing and convex cost of losing reserves as in Parlour, Rajan, and Walden

(2020).2 In contrast, the customers’ liquidity loss positively affects the bank’s profits, which is a

new feature of our model. As the customers lose liquidity (deposits) through payment outflows,

their marginal value of liquidity increases.3 The customers’ liquidity shortage implies more profits

2Bhattacharya and Gale (1987) show that interbank markets allow banks to share liquidity risk. However, trading
frictions give rise an increasing and convex cost (Afonso and Lagos, 2015; Bigio and Sannikov, 2019). The freeze of
interbank market can be interpreted as stronger convexity in the cost of reserve loss, which reduces bank lending in
line with the evidence (Iyer, Peydró, da-Rocha-Lopes, and Schoar, 2013; Ippolito, Peydró, Polo, and Sette, 2016).

3We follow the literature on liquidity management under financial constraints (Froot, Scharfstein, and Stein, 1993;
Riddick and Whited, 2009; Bolton, Chen, and Wang, 2011; Décamps, Mariotti, Rochet, and Villeneuve, 2011).
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for the bank through a stronger demand for future loans. Likewise, payment inflows positively

affects a bank’s profits through reserve (liquidity) injection but negatively affects profits by in-

creasing bank customers’ liquidity (deposits) and reducing their loan demand.

Therefore, depending on which force dominates, banks’ lending decisions may exhibit strate-

gic complementarity or substitution, which is captured by the network effect parameter, ϕ. Specif-

ically, when a bank increases lending and other banks receive payment inflows as a result, the

other banks may lend more (ϕ > 0) because having more reserves reduces the marginal cost of

reserve drain due to the post-lending payment outflows. However, the other banks may also lend

less (ϕ < 0) because their customers gain deposits (liquidity) and demand less credit.

We find that the force of strategic complementarity dominates (i.e., ϕ > 0). Under strategic

complementarity, the payment-flow network becomes a shock amplification mechanism. Consider

a positive shock to a bank. The shock may originate from the credit demand side, such as the

profitability of loan-financed projects and collateral values. The shock may arise from the credit

supply side and depends on the bank’s balance-sheet capacity, loan market power, and regulatory

constraints. When a positive shock triggers the bank to finance more lending with deposits, a

subset of depositors pay depositors at other banks. Under ϕ > 0, the other banks increase lending

in response to payment inflows, which in turn triggers another round of shock propagation. Our

estimate of ϕ is statistically significant and large in magnitude. It implies that when all banks are

hit by unitary shocks, the payment network amplifies the shock by 17% to 1.17 for each bank.

The equilibrium features a money multiplier. The monetary base (i.e., reserves) serves as

banks’ liquidity buffer that covers interbank settlement due to deposit (payment) outflows, and the

quadratic cost of reserve loss connects a bank’s reserves and its lending financed by deposits. The

topology of payment flows determines the liquidity spillover effects. As strategic complementar-

ity is the dominant force on the network, the spillover effects translate into a credit multiplier.
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Therefore, reserves and the creation of loans and deposits are connected first through individual

banks’ liquidity management, and then reserves are distributed through liquidity percolation in

the payment system, triggering a ripple effect that amplifies shocks to individual banks. After the

global financial crisis, the reserve holdings of banks increased dramatically through to a variety of

mechanisms, for example, central bank balance-sheet expansion through quantitative easing. One

may argue that reserves are abundant and liquidity management is no longer a concern. However,

recent evidence shows that liquidity shortage in the payment system can still arise and disrupted

the market of repurchase agreements especially under heightened regulatory requirements on bank

liquidity holdings (Copeland, Duffie, and Yang, 2021). Our analysis demonstrates the importance

of bank liquidity management and, in particular, shows that liquidity percolation and redistribution

through the payment system drive the aggregate supply of bank credit to the real economy.

Our structural estimation also quantifies a bank’s lending without the network effects. We

treat the network-independent lending volume as a random variable and estimate its mean and

volatility. This allows us to conduct counterfactual analysis and decompose a bank’s systemic

importance into its network-independent lending and its position in the payment-flow network. To

examine the importance of network topology, we compare the mean and volatility of aggregate

credit supply in equilibrium with the hypothetical mean and volatility under a uniform network

where banks are equally connected. Under ϕ > 0, both our data network and the counterfactual

network amplify shocks. The expected levels of credit generated by the two networks are similar

with the uniform network slightly outperforming. However, the two networks differ in generating

the volatility of credit supply. The data network generates a volatility that is 20% higher.

The volatility of aggregate credit supply can be decomposed into individual banks’ contri-

butions, and each bank’s contribution is a product of a network centrality measure, which summa-

rizes the shock propagation routes through the payment linkages, and the volatility of its network-
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independent lending. We identify banks that contribute the most to the volatility of credit supply

and highlight the role of network topology in generating the cross-sectional heterogeneity in banks’

systemic importance. Less than 10% of banks contribute to more than 90% of credit-supply volatil-

ity. For these banks, their special positions in the network amplify the impact of their shocks.

The traditional banking literature emphasizes bank runs and insolvencies. Instead of con-

sidering such extreme events, we model the day-to-day operations of solvent banks and highlight

the role of payment-flow network in generating lending externalities and excess volatility of credit

supply. However, our structural analysis still allows us to examine the impact of removing a bank

from the network on credit supply. Because we do not model bank failure and surviving banks’

responses, our analysis is conducted under the assumption that new linkages in the payment-flow

network are not immediately formed after bank failure. Hence, we capture the short-run effects of

a bank’s unexpected exit.4 We find that size cannot serve as proxy for systemic importance. More-

over, relative to the counterfactual network of equally connected banks (the uniform network), the

data network of payment flows significantly amplifies the influence of a small subset of banks and

dampens the influence of another subset. This finding reveals the importance of examining the

payment-flow network for predicting the impact of bank failure on the aggregate credit supply.

Finally, we calculate the planner’s solution with our structural estimates. The planner’s ob-

jective function is simply the equal-weighted sum of banks’ profits without incorporating the util-

ities of depositors and borrowers. Therefore, our analysis does not aim for welfare implications

but rather focuses on quantifying the impact of network externalities on the aggregate level and

cross-sectional distribution of credit supply. By comparing the planner’s solution and the market

equilibrium, we identify three payment-network externalities. First, individual banks do not in-

ternalize the expected costs and benefits of their customers’ payment flows for the payees’ banks.

4Our sample period from 2010 or 2020 is absent of major banking crises in the U.S. Since we do not observe bank
failure in our sample, we cannot provide a precise time frame for link formation after removal.
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Second, when a bank expands lending, the associated payment-flow uncertainty increases for the

payees’ banks. Third, depending on the pair-wise correlation of payment flows, a bank’s lending

may offer a hedge against (or a multiplier for) the other banks’ payment-flow risk.

The three forces contribute to the difference in the mean and volatility of credit supply be-

tween the market equilibrium and the planner’s solution. The planner’s expected level of credit

supply is 8.6% higher than that of the market equilibrium, and the planner’s volatility is 20%

lower. To the extent that the real sector benefits from a more favorable risk-return trade-off in

the supply of bank credit, our analysis indicates that policy interventions, aiming at correcting the

payment-flow externalities, can benefit both the borrowers in the real economy and the banks.5

Our rolling estimation shows that the mean and volatility wedges between the market equilibrium

and planner’s solution are both wider in periods with stronger network effects (higher values of ϕ).

The planner’s solution and market equilibrium also differ in the distribution of credit provi-

sion across banks. Because many borrowers rely on relationship lending, the distribution of credit

across banks affects the real economy.6 Relative to the planner’s solution, the market equilibrium

features more dispersed distributions of both the mean and volatility of bank lending. If a bor-

rower can switch between lenders, she may prefer moving towards a lender with a higher expected

level of credit provision and less volatility. Our finding suggests that payment-flow externalities

amplify the cross-sectional dispersion in the risk-return profiles of banks’ credit provision, making

any frictions limiting borrowers’ mobility more costly.7

5Payment system reforms involve the design of netting mechanisms, bilateral credit lines between banks, and
overdraft at the central bank (see, e.g., Calomiris and Kahn, 1996; Freixas and Parigi, 1998; Kahn and Roberds, 1998;
Martin and McAndrews, 2008; Bech, Chapman, and Garratt, 2010; Bech, Martin, and McAndrews, 2012; Chapman,
Gofman, and Jafri, 2019). These measures potentially reshape the payment-flow topology and affect bank lending.

6There is a large literature on relationship lending (e.g., Berger and Udell, 1995; Berlin and Mester, 1999; Dahiya,
Saunders, and Srinivasan, 2003; Degryse and Ongena, 2005; Bolton, Freixas, Gambacorta, and Mistrulli, 2016).

7Firms with less mobility may benefit from building more bank relationships. Firms maintain more bank relation-
ships in countries with inefficient judicial systems (Ongena and Smith, 2000). Loan terms are often better at the onset
of a lending relationship and toughen as time goes (Ioannidou and Ongena, 2010).
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Literature. Our paper contributes to the literature on banks as inside money creators. Deposits

are financing instruments for the lending bank and means of payment for its customers. Our paper

is most related to Gersbachd (1998), Freixas, Parigi, and Rochet (2000), Bianchi and Bigio (2014),

Parlour, Rajan, and Walden (2020), and Garratt, Yu, and Zhu (2021). These papers theoretically

analyze how payment activities affect banks’ liquidity management and generate spillover effects

of one bank’s deposit creation through lending on other banks. We make three contributions.

First, we use detailed payment data to quantify the payment-flow topology and structurally

estimate its impact on credit supply, while the existing studies are mostly theoretical or aim for

quantitative results from parameter calibration based on aggregate or average statistics. Second,

we model customer-initiated payment flows as directed random graphs that redistribute liquidity

among banks ex post (after lending) and generate bilateral network linkages feeding into banks’

lending decisions ex ante. The existing studies do not model the randomness of payment-flow

networks. As shown theoretically by Bolton, Li, Wang, and Yang (2020) and empirically by Li and

Li (2021), payment-flow risk has a strong influence on bank lending. Third, motivated by Piazzesi

and Schneider (2016), our framework recognizes the implications of two-layer payment system

on liquidity management of both banks and their customers. Doing so allows us to characterize

two opposing forces, one responsible for strategic complementarity in banks’ lending decisions on

the payment network and the other responsible for strategic substitution. Our structural estimation

allows us to identify the dominant force and how the relative strength varies of time.

Our paper offers direct evidence that ties banks’ roles as lenders and issuers of inside money

(transferable debts), providing support to the largely theoretical literature on banks’ dual role of

credit and money creators (Gorton and Pennacchi, 1990; Freeman, 1996; Cavalcanti and Wallace,

1999; Azariadis, Bullard, and Smith, 2001; Kiyotaki and Moore, 2000, 2002, 2005; Monnet, 2006;

Kahn and Roberds, 2007; Skeie, 2008; Stein, 2012; Gu, Mattesini, Monnet, and Wright, 2013;
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Bianchi and Bigio, 2014; Hart and Zingales, 2014; Quadrini, 2017; DeAngelo and Stulz, 2015;

Jakab and Kumhof, 2015; Monnet and Sanches, 2015; Brunnermeier and Sannikov, 2016; Li, 2016;

Donaldson, Piacentino, and Thakor, 2018; Bigio and Sannikov, 2019; Begenau, Bigio, Majerovitz,

and Vieyra, 2019; d’Avernas, Vandeweyer, and Pariès, 2019; Donaldson and Piacentino, 2019;

Wang, 2019; Piazzesi, Rogers, and Schneider, 2019; Faure and Gersbach, 2021).8

This paper contributes to the literature on network analysis by providing the first empirical

analysis of how the network of bank customers’ payment flows affects credit supply. The existing

literature focuses on the network of banks’ transactions (rather than their customers). These two

types of networks are related. Customers’ payments induce liquidity risk for banks (unexpected

reserve loss) that can be mitigated by interbank reserve borrowing/lending (Bhattacharya and Gale,

1987).9 The resultant trading network has been the focus of the network literature (see Allen and

Babus (2009), Glasserman and Young (2016), and Jackson and Pernoud (2021) for a review).10 In

8The theoretical literature on bank liquidity creation studies the broad implications on risk sharing and intertempo-
ral resource allocation (Bryant, 1980; Diamond and Dybvig, 1983; Diamond, 1984; Ramakrishnan and Thakor, 1984;
Millon and Thakor, 1985; Jacklin, 1987; Postlewaite and Vives, 1987; Gorton and Pennacchi, 1990; Allen and Gale,
2004; Goldstein and Pauzner, 2005; Allen, Carletti, and Gale, 2014; Krishnamurthy and Vissing-Jørgensen, 2015).

9Banks trade reserves to smooth out liquidity shocks (e.g., Freixas, Parigi, and Rochet, 2000; Dasgupta, 2004;
Afonso and Lagos, 2015; Castiglionesi, Feriozzi, and Lorenzoni, 2019; Parlour, Rajan, and Walden, 2020).

10There are three types of potentially endogenous network linkages. First, banks are linked through financial con-
tracts (Allen and Gale, 2000; Furfine, 2000; Eisenberg and Noe, 2001; Boss, Elsinger, Summer, and Thurner, 2004;
Upper and Worms, 2004; Wells, 2004; Brusco and Castiglionesi, 2007; Degryse and Nguyen, 2007; Cocco, Gomes,
and Martins, 2009; Bech and Atalay, 2010; Gai, Haldane, and Kapadia, 2011; Iyer and Peydró, 2011; Mistrulli, 2011;
Upper, 2011; Haldane and May, 2011; Castiglionesi and Wagner, 2013; Kuo, Skeie, Vickery, and Youle, 2013; Za-
wadowski, 2013; Farboodi, 2014; Gabrieli and Georg, 2014; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Elliott,
Golub, and Jackson, 2015; Babus, 2016; Bräuning and Fecht, 2016; Hüser, 2016; Erol and Ordoñez, 2017; Gofman,
2017; Blasques, Bräuning, and van Lelyveld, 2018; Castiglionesi and Eboli, 2018; Demange, 2018; Craig and Ma,
2021; Corbae and Gofman, 2019; Anderson, Erol, and Ordoñez, 2020; Denbee, Julliard, Li, and Yuan, 2021; Jack-
son and Pernoud, 2021; Jasova, Laeven, Mendicino, Peydró, and Supera, 2021) Second, banks share common risk
exposure, for example, through common assets (Cifuentes, Ferrucci, and Shin, 2005; Leitner, 2005; Acharya and
Yorulmazer, 2007; Ibragimov, Jaffee, and Walden, 2011; Allen, Babus, and Carletti, 2012; Greenwood, Landier, and
Thesmar, 2015; Caccioli, Farmer, Foti, and Rockmore, 2015; Cabrales, Gottardi, and Vega-Redondo, 2017; Albu-
querque, Cabral, and Guedes, 2019; Heipertz, Ouazad, and Rancière, 2019; Kopytov, 2019; Morrison and Walther,
2020). Third, linkages are formed through OTC bilateral trading (Duffie, Malamud, and Manso, 2009; Hugonnier,
Lester, and Weill, 2014; Afonso and Lagos, 2015; Bech and Monnet, 2016; Farboodi, Jarosch, and Shimer, 2017;
Chang and Zhang, 2019; Dugast, Üslü, and Weill, 2019; Eisfeldt, Herskovic, Rajan, and Siriwardane, 2019; Li and
Schürhoff, 2019; Üslü, 2019; Hendershott, Li, Livdan, and Schürhoff, 2020).
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practice, payment activities and reserve transfers take place before interbank reserve trade under

real-time gross settlement (RTGS) in most advanced economies (Bech and Hobijn, 2007). There-

fore, our paper departs from the focus of the literature on the interbank network of reserve trade

and takes a step back to analyze the more primitive network of bank customers’ payment flows.11

There are three common challenges in network analysis. First, inferring the network link-

ages requires bilateral transaction data. Second, network linkages are often endogenous to banks’

choices, and it is difficult to model and structurally estimate equilibrium with endogenous network.

Third, network linkages may vary over time and exhibit randomness. In our paper, customer-

initiated payment flows are directly observed from Fedwire. Moreover, the network of interest is

not endogenous to banks’ choices (unlike, for example, the commonly studied interbank network

of reserve trade) but rather arises from customers’ payment activities. Finally, we directly model a

random network and are able to quantify the jointly probability distribution of customer-initiated

payment flows from any given bank to other banks. In fact, our emphasis is precisely on banks’

lack of control over the random directions of payment flows.

In this paper, we find that what matters for bank lending is not only the volatility of individual

banks’ payment outflows (as shown by Li and Li (2021)) but the complete network of random

payment flows across banks. Our findings on how payment-flow networks affect bank lending

contribute to the literature on funding stability and credit supply (Loutskina and Strahan, 2009;

Ivashina and Scharfstein, 2010; Cornett, McNutt, Strahan, and Tehranian, 2011; Ritz and Walther,

2015; Dagher and Kazimov, 2015; Carletti, De Marco, Ioannidou, and Sette, 2021).12 In terms of

11There are possibly two reasons behind the exclusive focus of literature on interbank networks rather than the
network of customers’ payment flows. First, it is difficult to obtain customers’ payment data. Second, before the
wide adoption of RTGS, settlement does not necessarily require reserve transfer. For example, in the old deferred net
settlement (DNS) system, interbank borrowing/lending relationships can happen simultaneously as customers make
payments (banks experiencing payment outflows borrow reserves to settle with banks experiencing inflows).

12The broader literature on funding stability and credit supply includes studies on the impact of legal and regulatory
frameworks that restrict banks’ funding access (Jayaratne and Strahan, 1996; Qian and Strahan, 2007; Adelino and
Ferreira, 2016; Di Maggio and Kermani, 2017; Cortés, Demyanyk, Li, Loutskina, and Strahan, 2020).
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funding instability, our paper complements the traditional literature on bank runs, as our focus is

different and on the day-to-day operations of banks without the threat of insolvency.13

Kahn and Roberds (2009) review the payment literature that focuses on how payment-flow

risk affects settlement and the directly related high-frequency reserve-management decisions rather

than banks’ lending to the real economy.14 We show that payment risk propagates into banks’

decisions on lending and balance-sheet composition at lower (quarterly) frequencies.

Our framework provides policy guidance on identifying systemically important banks whose

lending decisions have disproportionately large impact on aggregate credit supply due to their

special positions in the payment network. Specifically, we decompose credit-supply volatility to

individual banks’ contributions. Different from the statistical approach in Diebold and Yılmaz

(2014), our variance decomposition relies on a structural model and empirically measured pay-

ment network. Our paper contributes broadly to the literature on measuring systemic risks (Billio,

Getmansky, Lo, and Pelizzon, 2012; Acharya, Pedersen, Philippon, and Richardson, 2016; Adrian

and Brunnermeier, 2016; Bai, Krishnamurthy, and Weymuller, 2018; Duarte and Eisenbach, 2021).

Benoit, Colliard, Hurlin, and Pérignon (2016) provide a survey. Our systemic risk measure is re-

lated to Ballester, Calvo-Armengol, and Zenou (2006), Greenwood, Landier, and Thesmar (2015),

and Denbee, Julliard, Li, and Yuan (2021) but emerges as equilibrium outcome from a new setting

13Our approach of measuring payment risk emphasizes banks’ regular operations rather than large deposit outflows
at distressed banks (Iyer, Puri, and Ryan, 2016; Martin, Puri, and Ufier, 2018; Brown, Guin, and Morkoetter, 2020).
Large deposit outflows are triggered by fundamental news or coordination failure (Gorton, 1988; Saunders and Wilson,
1996; Calomiris and Mason, 1997; Iyer and Puri, 2012). This literature also studies cash withdrawal as depositors’
discipline on risky banks (Park and Peristiani, 1998; Billett, Garfinkel, and O’Neal, 1998; Martinez Peria and Schmuk-
ler, 2001; Goldberg and Hudgins, 2002; Bennett, Hwa, and Kwast, 2015; Brown, Guin, and Morkoetter, 2020). In
our model, what constrains banks’ balance-sheet is the frictions that make replenishing reserves costly, for example,
interbank OTC market frictions (Afonso and Lagos, 2015), rather than depositor discipline.

14The literature studies intraday reserve flows, especially coordination failure in banks’ payment-timing decisions
(Poole, 1968; Hamilton, 1996; McAndrews and Potter, 2002; Bech and Garratt, 2003; Ashcraft and Duffie, 2007; Bech,
2008; Afonso, Kovner, and Schoar, 2011; Afonso and Shin, 2011; Ashcraft, McAndrews, and Skeie, 2011; Bech,
Martin, and McAndrews, 2012; Ihrig, 2019; Yang, 2020), and instability in short-term funding markets (Ashcraft and
Bleakley, 2006; Ashcraft, McAndrews, and Skeie, 2011; Acharya and Merrouche, 2013; Chapman, Gofman, and Jafri,
2019; d’Avernas and Vandeweyer, 2020; Correa, Du, and Liao, 2020; Copeland, Duffie, and Yang, 2021).
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and has features unique to bank lending. Our empirical specification is a form of spatial econo-

metric models (Anselin, 1988; LeSage and Pace, 2009; Elhorst, 2010; Lee and Yu, 2010). Spatial

models have been adopted only recently in the finance literature in different settings (Buraschi and

Porchia, 2012; Ozdagli and Weber, 2017; Herskovic, Kelly, Lustig, and Van Nieuwerburgh, 2020;

Denbee, Julliard, Li, and Yuan, 2021; Jiang and Richmond, 2021).

2 Model: Credit and Money Creation on a Payment Network

2.1 The model setup

Consider an economy with N banks. At t = 0, bank i (i ∈ {1, ..., N}) is endowed with mi amount

of fiat money in its reserve account at the central bank (contributed by shareholders and equal to

equity). Bank i lends at t = 0. Depositors make payments at t = 1. Loans are repaid at t = 2. The

loans cannot be liquidated or sold at t = 1, so the bank covers payment outflows with reserves.

The timing is in line with the literature (Diamond and Dybvig, 1983), and, in practice, payment

settlement is done at a higher frequency (intraday or overnight) than loan book adjustment.

Bank i extends yi amount of loans financed by a matching amount of deposits.15 Depositors

make payments at t = 1 before the loans are repaid. If the payees hold accounts at other banks,

bank i has to send reserves to the payees’ banks to settle payments and deduct the corresponding

amount of deposit liabilities, shrinking its balance sheet, while the payees’ banks receive reserves

and credit the payees’ deposit accounts with new deposits, expanding their balance sheets.

15The first deposit holders are often the borrowers who naturally obtain loans for purchases and have payment needs.
In practice, credit creation is a debt swap. Bank i obtains the borrowers’ debts (loans) while the borrowers obtain bank
i’s debts (new deposits). This practice of credit and money (deposit) creation has been adopted in the modern banking
system (Gurley and Shaw, 1960; Tobin, 1963; Bianchi and Bigio, 2014; McLeay, Radia, and Thomas, 2014) and
throughout the history of banking (Wicksell, 1907; Donaldson, Piacentino, and Thakor, 2018).
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Let gij denote the fraction of payees at bank j (j ̸= i). Given the deposits yi, we define

zi ≡
∑
j ̸=i

gijyi (1)

as the total reserve outflow to other banks due to the depositors’ payments. We capture the risk in

payment flows by assuming that gij is random with mean µij and variance σ2
ij . As in Bolton, Li,

Wang, and Yang (2020), deposits are essentially debts with random maturities. A random fraction∑
j ̸=i gij of the newly created deposits matures at t = 1 while the rest mature at t = 2.

Bank i also receive payment inflows as a result of other banks’ lending. Given bank j’s

lending amount yj (j ̸= i), bank i receives payment inflow equal to gjiyj , where, consistent with

the previous definitions, gji has mean µji and variance σ2
ji. The correlation between between gij

and gji is denoted by ρij . We would expect ρij to be negative if economic activities are directional,

involving mainly bank i’s customers paying j’s customers. The correlation ρij can also be positive

if bank i’s customers’ payments to j’s customers stimulate economic activities between transaction

counterparties that result in j’s customers making payments to i’s customers. For simplicity, it is

assumed that the flow fractions are independent across bank pairs.

We define the net payment outflow for bank i:

xi =
∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj , (2)

Note that payment outflow can also be viewed as depositors’ cash withdrawal (rather electronic

transfers to payees’ bank accounts) and their payees’ cash deposits. Cash transactions also result

in the payees’ banks expanding their balance sheets with more reserves on the asset side and more

deposits on the liability side. Different from Diamond and Dybvig (1983) who assume a constant

fraction of deposit holders who withdraw at t = 1, here the withdrawal fraction,
∑

j ̸=i gij , is
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random.16 Our emphasis on the randomness in gij is consistent with the findings that payment risk

is a critical determinant of bank lending (Li and Li, 2021).

Bank i’s costs of covering payment outflow are specified as follows:

τ1(xi −mi) +
τ2
2
(xi −mi)

2 +
κ

2
z2i , where τ1 > 0, τ2 > 0, andκ > 0 . (3)

If xi −mi > 0 (i.e., the bank does not have enough reserves to cover the outflow), this represents

an increasing and convex cost of interbank borrowing. The convexity, as microfounded in Bigio

and Sannikov (2019) and Parlour, Rajan, and Walden (2020), captures the impact of interbank

market frictions (Afonso and Lagos, 2015).17 When xi −mi < 0, this quadratic form presents an

increasing and concave return on interbank lending, and the concavity is again due to the frictions

in the interbank market. This quadratic form and others that follow imply a linear first order

condition for yi that directly maps to our empirical specification. Finally, since xi, defined in (2),

is the net flow, we add an additional term, κ
2
z2i (where the gross outflow, zi, is defined in (1)),

to capture the fact that netting may not happen instantaneously, especially in the real-time gross

settlement (RTGS) systems adopted by most of the advanced economies. As a result, payment

outflow may incur additional costs associated with intraday (pre-netting) payment stress (Poole,

1968; Afonso, Kovner, and Schoar, 2011; Ashcraft, McAndrews, and Skeie, 2011; Ihrig, 2019;

Copeland, Duffie, and Yang, 2021). Kahn and Roberds (2009) review the payment literature.

Payment flows affect both banks and their customers. For bank i, payment outflows cause its

reserves to decline and, at the same time, its customers’ deposits to decline by the same amount;

likewise, payment inflows imply reserve gain for bank i and an increase in deposit holdings of

i’s customers. The simultaneous effects of payment flows on both banks and their customers is a

16Related, Drechsler, Savov, and Schnabl (2021) emphasize that deposits are long-duration liabilities.
17Banks may borrow from the central bank, but in practice, they are discouraged from utilizing discount window

and payment-system overdrafts (Copeland, Duffie, and Yang, 2021).
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direct implication of the two-layer design of payment systems where settlement between banks is

done via reserves and settlement between bank customers done via deposits. The impact on bank

customers may in turn affect banks’ lending opportunities and thus ought to be considered.

Consider xi > 0, i.e., bank i and its customers incur outflows. The customers now have less

liquidity held in the form of bank deposits, so their demand for bank loans in the future increases,

which enhances bank i’s future profitability. The impact on bank i’s (continuation) value is

θ1xi +
θ2
2
x2
i , where θ1 > 0 and θ2 > 0 . (4)

In Appendix B, we provide a microfoundation for (4) based on bank customers’ liquidity manage-

ment problem. The first term, which is positive if xi > 0, arises from bank i’s customers having

less liquidity holdings (deposits) and relying more on future bank credit. The second term captures

the increasing marginal impact: As bank i’s customers lose liquidity, their marginal value of liq-

uidity increases, which allows the bank to profit more from credit provision.18 If xi < 0, bank i’s

profits may decline as customers receive payments and hold more liquidity (deposits). A greater

inflow (i.e., a more negative xi) and a sharper decline of customers’ marginal value of liquidity

imply a lower marginal profits (θ1 + θ2xi) from lending to meet customers’ future liquidity needs.

Let Ri+εi denote the loan return for bank i, where Ri is a constant and εi represents a shock

that is realized before bank i makes its lending decision at t = 0. The shock may come from the

credit demand side, such as the profitability of loan-financed projects and collateral (real estate)

value. The shock can also arise from the credit supply side and depends on factors such as bank

i’s loan market power, lending clientile, and regulatory costs of lending associated capital require-

ments or leverage regulations in general (e.g., the supplementary leverage ratio requirement). A

18Such response in the marginal value of liquidity arises in static settings (see Appendix B) and dynamic settings
(Riddick and Whited, 2009; Bolton, Chen, and Wang, 2011; Décamps, Mariotti, Rochet, and Villeneuve, 2011).
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key aspect of our empirical analysis is to identify the size of shock εi and the shock propagation

mechanism through the strategic interactions in banks’ lending decisions on the payment network.

For simplicity, it is assumed that the deposit rate is zero, so lending financed by deposits

incurs a cost of 1 and the net interest margin or excess return is Ri + εi − 1.19 Collecting the net

interest margin and the quadratic forms (3) and (4), we obtain the expected profits (objective):

max
yi

E
[
(Ri + εi − 1)yi − τ1(xi −mi)−

τ2
2
(xi −mi)

2 − κ

2
z2i + θ1xi +

θ2
2
x2
i

]
. (5)

We impose the following parameter restriction to ensure the concavity in yi:

τ2 + κ > θ2 . (6)

Taking together the second to fifth terms, we see that the costs of bank i losing liquidity as a result

of payment outflows, xi > 0, are compensated by its customers’ increasing marginal value of

liquidity (and the associated future lending profits) because as bank i loses liquidity (reserves), its

customers lose liquidity (deposits) as well. Similarly, payment inflows, xi < 0, imply increasing

and concave profits from lending out reserves that are partly offset by a decrease in future lending

profits as customers hold more liquidity (deposits) and their borrowing needs decline.20

Our focus is on a bank’s normal-time operations rather than banking crises. We assume that

the bank has enough equity capital (and reserves) to buffer risk and never becomes insolvent. To

19As emphasized by Tobin (1963), a bank can only create money (issue deposits) if there are people willing to hold
its deposits. The assumption of a zero deposit rate implies a perfectly elastic demand for bank i’s deposit liabilities.

20Another cost of payment inflows for banks is related to regulations as pointed out by Bolton, Li, Wang, and Yang
(2020). Reserve and deposit inflows force banks to expand balance sheets and tighten the supplementary leverage ratio
(SLR) regulation imposed on total leverage. Moreover, banks cannot simply lend out reserves to earn higher interest
income because, with more deposits (especially the less sticky wholesale deposits), liquidity coverage ratio regulation
requires banks to hold more liquid assets. Therefore, payment inflows squeeze banks’ balance-sheet capacities. During
the Covid-19 pandemic, banks received massive deposit inflows as a result of policy stimulus and, under the regulatory
constraints, banks active seek options to turn down deposit inflows (Moise, 2021, Financial Times).
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clearly characterize the parameter restriction, we impose τ1 > θ1. Therefore, under the condition

(6), the realized profits decrease in xi. Therefore, the lowest realized profits are in the case of

largest realized net outflow (i.e.,
∑

j ̸=i gij = 1 and
∑

j ̸=i gij = 0 so that xi = zi = yi). It is

assumed that banks stay solvent even in this worst-case scenario: ∀i ∈ {1, ..., N},

(Ri + εi − 1)y∗i − τ1(y
∗
i −mi)−

τ2
2
(y∗i −mi)

2 − κ

2
y∗2i + θ1y

∗
i +

θ2
2
y∗2i > 0 , (7)

where y∗i is the optimal solution of yi that we solve in the next subsection. This parameter restric-

tion also rules out bank run because even when all deposits are withdrawn (
∑

j ̸=i gij = 1) and

there are no payment inflows (
∑

j ̸=i gij = 0), the bank can still cover the outflows with borrowed

reserves (if y∗i > mi) and the borrowing cost is not high enough to cause insolvency.

Before solving yi, we clarify that the bank finances lending with deposits instead of reserves.

Deposit issuance only causes a probabilistic reserve drawdown (as some of the borrowers’ payees

may be the bank’s own depositors) while lending out reserves causes a direct drawdown. There-

fore, as long as the marginal cost of spending reserves is above the deposit rate, the bank prefers

financing lending with deposits over reserves. We assume this is the case, in line with the evidence

that deposits rates are below the fed funds rate in our sample and other findings (e.g., Rose and

Kolari, 1985; Drechsler, Savov, and Schnabl, 2017; Li and Li, 2021).21

21Moreover, because borrowers do not have accounts at the central bank, dollar bills have to be redeemed if the bank
decides to lend out reserves. This institutional barrier implies that it is more convenient to credit borrowers’ checking
accounts with new deposits than to lend out reserves. In practice, credit creation is a debt swap. Bank i obtains the
borrowers’ debts (loans) while the borrowers obtain bank i’s debts (new deposits). Then the borrowers make payments
and the lending bank intermediates between depositors (i.e., the borrowers’ payees) and borrowers. This practice has
been adopted in the modern banking system (Gurley and Shaw, 1960; Tobin, 1963; Bianchi and Bigio, 2014; McLeay,
Radia, and Thomas, 2014) and throughout the history (Wicksell, 1907; Donaldson, Piacentino, and Thakor, 2018).
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2.2 Equilibrium on the payment network

We characterize the equilibrium of the network lending game of simultaneous actions. First, we

take as given yj (j ̸= i) and solve bank i’s optimal choice of credit creation and deposit issuance, yi

(i.e., bank i’s optimal response to other banks’ decisions). To simplify the notations, we introduce

the mean of total payment outflows as a fraction of yi:

µ−i ≡ E

[∑
j ̸=i

gij

]
, (8)

and the variance of total payment outflows as a fraction of yi:

σ2
−i = Var

(∑
j ̸=i

gij

)
. (9)

We derive the following first-order condition for yi (derivation details in the appendix):

Ri + εi − 1 =(τ1 − θ1)µ−i + yi (κ+ τ2 − θ2)
(
σ2
−i + µ2

−i

)
− τ2µ−imi

− (τ2 − θ2)
∑
j ̸=i

(
µ−iµji + ρijσijσji

)
yj . (10)

The marginal benefit of lending (i.e., the net interest margin on the left side) is equal to the marginal

cost that incorporates both the negative and positive effects of payment outflows. The first term

on the right side, (τ1 − θ1)µ−i, reflects the negative effect of draining reserves on bank profits

and the positive effect of customers losing liquidity and relying more on future loans. The second

term captures the payment-flow risk (i.e., the randomness in
∑

j ̸=i gij) associated with one more

dollar of lending with the parameter κ representing additional cost of gross payment outflows as

previously discussed. The third term shows that having more reserves reduces the marginal cost of
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outflow by reducing the needs for costly reserve borrowing.

In the last term on the right side of (10), the network effects can be decomposed into the

liquidity externality and hedging externality. The first component, µ−iµjiyj , shows that if bank i

lends more and incurs the marginal outflow µ−i, bank j’s lending and its payment flow to i (i.e.,

µijyi) alleviates i’s reserve drain and thus has a greater marginal benefit in reducing i’s cost of

lending. We call this term the liquidity externality of payment network following Parlour, Rajan,

and Walden (2020). Hedging externality is captured by the second component, ρijσijσjiyj . Given

bank j’s lending, yj , one more dollar of lending by bank i causes itself (and its customers) to

receive more inflow if ρijσijσji, the covariance between gij and gji, is positive, in which case bank

i’s lending stimulates economic activities that cause j’s customers to pay i’s customers; if the

covariance is negative, the more bank i lends, the more outflow from i to j, with the overall impact

scaled by j’s lending yj . We call this term, ρijσijσjiyj , the hedging externality.22

Rearranging the first-order condition (10), we solve the optimal yi:

yi =ϕ
∑
j ̸=i

wijyj + ai (11)

where the network attenuation factor, ϕ, is given by

ϕ =
τ2 − θ2

κ+ τ2 − θ2
, (12)

and the ij-th element of the network adjacency matrix, denoted by W, is given by

wij =
µ−iµji + ρijσijσji

σ2
−i + µ2

−i

. (13)

22The network connections arise from risk sharing as in Eisfeldt, Herskovic, Rajan, and Siriwardane (2019).
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The other terms are collected into ai (a = [a1, ..., aN ] in vector form):

ai ≡
Ri + εi − 1− (τ1 − θ1)µ−i + τ2µ−imi

(κ+ τ2 − θ2)(σ
2
−i + µ2

−i)
. (14)

Note that the denominator in (13) and (14) gives the second moment of total payment outflow as a

fraction of deposits (see (8) and (9)). It scales down bank i’s lending given bank j’s lending (j ̸= i)

and bank i’s characteristics in (14). This negative impact of payment flow risk on bank lending has

been documented by Li and Li (2021). This paper focuses on the network externalities.23

The bilateral network effects depend on the network attenuation factor and the ij-th element

of the network adjacency matrix:

ϕwij =

(
τ2 − θ2

κ+ τ2 − θ2

)(
µ−iµji + ρijσijσji

σ2
−i + µ2

−i

)
. (15)

If ϕwij > 0, the pair {i, j} feature strategic complementarity in their lending decisions. If τ2 > θ2

(i.e., ϕ > 0), the benefit of payment inflow from alleviating bank i’s reserve drain dominates the

cost from reducing future lending opportunities (by having i’s customers holding more liquidity).

Therefore, when bank j lends more, the expected marginal outflow, µji, goes to bank i. The liquid-

ity externality is valuable especially when bank i’s expected outflow per dollar lent, µ−i, is large.

Moreover, strategic complementarity is amplified by the hedging externality if the covariance be-

tween gij and gji, ρijσijσji, is positive, i.e., bank j’s lending triggers payment and reserve flows to

bank i precisely when bank i loses reserves via payment outflows to j. If the covariance is negative,

strategic complementarity is dampened and the pair may even flip to strategic substitution.24

The pair {i, j} exhibits strategic substitution in their lending decisions if ϕwij < 0. If

23The parameter, τ1, can be interpreted as the cost of reserve borrowing, which negatively affects bank lending in
line with the evidence (Jiménez, Ongena, Peydró, and Saurina, 2012, 2014).

24In our sample, there are only 0.39% of non-zero wij being negative. 6.47% of all pairs have non-zero wij .
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τ2 < θ2 (i.e., ϕ < 0), the cost of payment inflow from reducing future lending opportunities (by

increasing bank i’s customers’ liquidity holdings) dominates the benefit from alleviating bank i’s

reserve drain. In this case, bank i is averse to payment inflows and lends less if it expects to receive

more inflows from bank j. If ρijσijσji > 0 (thus ϕwij < 0), both the liquidity externality and

hedging externality point to more payment inflows to bank i if j lends more, so, under bank i’s

aversion to inflows (i.e., ϕ < 0), bank i lends less when j lends more; likewise, if bank i lends

more, bank j expects to receive more inflows and lends less. Therefore, the pair {i, j} exhibits

strategic substitution. If ρijσijσji < 0, the substitution effects from ϕ < 0 are dampened.

In our model, the payment network given by (13) describes the ex ante spillover effects in

both the first and second moments of payment flows. As previously discussed, the numerator of

(13) captures the hedging externality and liquidity externality from the payment network. A bank’s

lending decision depends other banks’ lending decisions because, under the two-layer design of

payment system, both the bank and its customers receive liquidity inflows due to the payments of

other banks’ borrowers. The linear and quadratic terms in the bank’s objective function imply that

both the expected flows and volatilities enter the banks’ decision making.

Proposition 1 Suppose |ϕλmax(W)| < 1, where the function λmax (·) returns the largest eigen-

value. Then, there is a unique interior solution for the Nash equilibrium outcome given by

y∗i = {M (ϕ,W)}i. a, (16)

where {}i. is the operator that returns the i-th row of its argument, and

M (ϕ,W) ≡ I+ ϕW + ϕ2W2 + ϕ3W3 + ... =
∞∑
k=0

ϕkWk = (I − ϕW)−1 , (17)

where I is the N ×N identity matrix.
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Proposition 1 summarizes the equilibrium solution.25 In vector form, we can rewrite (16):

y∗ = (I− ϕW)−1 a . (18)

The condition |ϕλmax(W)| < 1 states that network externalities must be small enough in order to

prevent the feedback triggered by such externalities to escalate without bounds. Note that equation

(11), which leads to equilibrium characterization in Proposition (1), is rather robust in that it could

be in principle derived from different micro-foundations and in different settings.26

The matrix M (ϕ,W) has an important economic interpretation: it aggregates all direct and

indirect links among banks using an attenuation factor, ϕ, that penalizes, as in Katz (1953), the

contribution of links between distant nodes at the rate ϕk, where k is the length of the path between

nodes. In the infinite sum in equation (17), the identity matrix captures the (implicit) link of each

bank with itself, the second term in the sum captures all the direct links between banks, the third

term in the sum captures all the indirect links corresponding to paths of length two, and so on. The

elements of M(ϕ,W), given by mij(ϕ,W) ≡
+∞∑
k=0

ϕk
{
Wk

}
ij

, aggregates all paths from j to i.

The matrix M (ϕ,W) contains information about the network centrality of bank.27 Multi-

plying the rows (columns) of M (ϕ,W) by a unit vector of conformable dimensions, we recover

the indegree (outdegree) Katz–Bonacich centrality measure. The indegree centrality measure pro-

vides the weighted count of the number of ties directed to each node (i.e., inward paths), while the

outdegree centrality measure provides the weighted count of ties that each node directs to the other

nodes (i.e., outward paths). The i-th row of M (ϕ,W) captures how bank i loads on the network

25The sequence in (17) converges under |ϕλmax(W)| < 1 (Debreu and Herstein, 1953). The equilbrium definition
is akin to that of Calvo-Armengol, Patacchini, and Zenou (2009) who study peer effects in education.

26For instance, customers’ payments can be driven by input-output linkages (Carvalho and Tahbaz-Salehi, 2019).
27This centrality measure takes into account the number of both direct and indirect connections in a network. For

more on the Bonacich centrality measure, see Bonacich (1987) and Jackson (2003). For other economic applications,
see Ballester, Calvo-Armengol, and Zenou (2006) and Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012). For
an excellent review of the literature, see Jackson and Zenou (2012).
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as whole, while the i-th column of M (ϕ,W) captures how the network as a whole loads on i.

The matrix M (ϕ,W) includes the network topology and network attenuation factor ϕ. Be-

fore the lending game starts, shocks to individual banks (attributed to εi) are encoded in a =

[a1, ..., N ], observed by banks and their peers. We can decompose ai given by (14) into a time-

invariant term for bank i, denoted by ᾱi, and a shock specific to bank i (originating from εi in the

model setup), denoted by νi, that is independent across banks:

ai = ᾱi + νi, (19)

where νi has mean equal to zero and variance δ2i . We define vectors ᾱ = [ᾱ1, ..., ᾱN ] and ν =

[ν1, ..., νN ]. To see clearly how the network propagates shocks, we rewrite (18) as

y∗ = M (ϕ,W) ᾱ︸ ︷︷ ︸
level propagation

+M (ϕ,W) ν︸ ︷︷ ︸
risk propagation

. (20)

The matrix M (ϕ,W) itself is not enough to determine the systemic importance of a bank. Regard-

less of M (ϕ,W), i.e., how the shocks are propagated, banks with large shocks (i.e., large δ2i ) have

a large influence on other banks’ lending decisions and the aggregate credit supply. The network

not only propagates shocks but also amplifies the impact of ᾱ on the level of banks’ lending. In

Section 3.3, we show how to utilize the equilibrium solution to identify banks that contribute the

most to the systemic risk of aggregate credit supply after we discuss the estimation methodology.

Discussion: Money multiplier. The traditional concept of money multiplier focuses on how

bank lending amplify reserves (high-powered money or the monetary base) into deposits (money

circulating among non-bank entities) through payments. In our model, a money multiplier can also

arise. First, reserves enter into banks’ network-independent lending, i.e., a given by (14). Second,
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the network amplifies a through M(ϕ,W) to the equilibrium amount of loans and deposits, y.

Our paper provides a theoretical underpinning of the money multiplier and estimates the network

amplification mechanism using payment data to quantify the random graph of payment flows.

2.3 The planner’s solution

The model characterizes not only the shock amplification mechanism through the payment network

but also the externalities. Individual banks make their decisions without internalizing the impact

on neighbors. We proceed to a formal analysis of the planner’s problem. We consider a planner

that equally weights the objective of each bank and chooses loan provision as follows:

max
{yi}Ni=1

E

[
N∑
i=1

(Ri + εi − 1)yi − τ1(xi −mi)−
τ2
2
(xi −mi)

2 − κ

2
z2i + θ1xi +

θ2
2
x2
i

]
. (21)

We do not aim for welfare implications as the planner’s objective only incorporates banks’ profits

instead of the total welfare of banks, borrowers, and depositors. The focus is on characterizing

network externalities through the wedge between the planner’s solution and market outcome.

The planner’s first order condition for bank i’s lending amount, yi, yields:

Ri + εi − 1 =yi (κ+ τ2 − θ2)
(
σ2
−i + µ2

−i

)
− τ2µ−imi − (τ2 − θ2)

∑
j ̸=i

(
µ−iµji + ρijσijσji

)
yj

+ yi(τ2 − θ2)σ
2
−i − (τ2 − θ2)

∑
j ̸=i

(µ−jµij + ρijσijσji)yj

+ (τ2 − θ2)
∑
j ̸=i

(∑
k ̸=j

µkjyk

)
µij −

∑
j ̸=i

τ2mjµij (22)

The planner’s marginal cost of bank i’s lending is on the right side of (22). Its first three terms

also appear on the right side of the first-order condition (10) in the market equilibrium but the rest
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differ and reflect the planner’s internalization of the spillover effects of bank i’s lending. First,

bank i’s costs or benefits associated with the expected outflow, (τ1 − θ1)µ−i in (10), disappears

because, from the planner’s perspective, bank i’s expected outflow is the other banks’ expected

inflow and thus i’s losses are offset by j’s gains. Second, the additional term, yi(τ2 − θ2)σ
2
−i,

reflects the fact that when bank i lends more, it adds payment flow risk not only to itself (via

the first term on the right side of (22)) but also to its neighbouring banks. Third, the fifth term,

−(τ2 − θ2)
∑

j ̸=i(µ−jµij + ρijσijσji)yj , captures the liquidity externality and hedging externality

of bank i’s lending on bank j (j ̸= i). In particular, the liquidity externality of bank i’s marginal

lending (through the marginal outflow, µij) has a stronger impact on bank j when j expected a

large outflow µ−j . The sixth term, (τ2 − θ2)
∑

j ̸=i(
∑

k ̸=j µkjyk)µij , shows that if bank j already

receives inflows due to bank k’s lending (k ̸= j), the marginal impact of liquidity from bank i (i.e.,

µij) is smaller. Finally, the last term shows that if bank j already has large reserve holdings, the

marginal impact of liquidity from bank i is smaller.

Rearranging the planner’s first-order condition (22), we solve the optimal yi:

yi =ϕ̃i

∑
j ̸=i

w̃ijyj − ϕ̃i

∑
j ̸=i

µij

(∑
k ̸=j

µkjyk

)
+ ãi (23)

where the network attenuation factor for bank i, ϕ̃i, is given by,

ϕ̃i =
(τ2 − θ2)(σ

2
−i + µ2

−i)

(κ+ τ2 − θ2) (σ
2
−i + µ2

−i) + (τ2 − θ2)σ
2
−i

=

(
1

ϕ
+

σ2
−i

σ2
−i + µ2

−i

)−1

, (24)

and the ij-th element of the network adjacency matrix, denoted by W̃, is given by

w̃ij =
µ−iµji + 2ρijσijσji + µ−jµij

σ2
−i + µ2

−i

. (25)
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The other terms are collected into ãi (ã = [ã1, ..., ãN ] in vector form):

ãi ≡
εi +Ri − 1 + τ2µ−imi −

∑
j ̸=i τ2mjµij

(κ+ τ2 − θ2) (σ
2
−i + µ2

−i) + (τ2 − θ2)σ
2
−i

. (26)

Throughout this paper, “ ·̃ ” differentiates the variable in the planner’s solution from its counterpart

in the decentralized equilibrium. The planner’s network attenuation factor differs from ϕ in (12)

and is bank i-specific due to the additional term, (τ2 − θ2)σ
2
−i, in the denominator that reflects the

payment risk spillover effect of bank i’s lending. This additional term scales down bank i’s lending

and also appears in the denominator of ãi in (26). Different from the decentralized counterpart in

(14), the numerator of ãi no longer has the expected outflow (which, from the planner’s perspective,

is offset by other banks’ inflow) but it has an additional term
∑

j ̸=i τ2mjµij because the liquidity

externality of bank i’s lending is less valuable when bank j (j ̸= i) already hold large reserves.

Finally, the ij-th element of adjacency matrix in (25) differs from its decentralized counterpart in

(13) by incorporating the hedging and liquidity externalities of bank i’s lending.

Let Φ̃ denote the diagonal matrix with the i-th diagonal element equal to ϕ̃i and U denote the

matrix with the ij-th element equal to µij . We rewrite the planner’s solution (23) in vector form:

y∗ = Φ̃W̃y − Φ̃UU⊤y + α̃ (27)

and in closed-form,

y∗ =
(
I− Φ̃W̃ + Φ̃UU⊤

)−1

α̃ . (28)

The following proposition summarizes the planner’s solution.

Proposition 2 Suppose
∣∣∣λmax

(
Φ̃W̃ + Φ̃UU⊤

)∣∣∣ < 1, where the function λmax (·) returns the

largest eigenvalue. Then, the planner’s optimal solution is uniquely defined and given by (28).
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3 Empirical Methodology

3.1 Data and the empirical specification

We use confidential transaction-level data from Fedwire Funds Service (“Fedwire”) that span from

2010 to 2020. Fedwire is a real-time gross settlement (RTGS) used to electronically settle U.S.

dollar payments among member institutions (including more than two thousand banks). The sys-

tem processes trillions of dollars daily. In 2020, the average weekly transaction value exceeded

the U.S. annual GDP. Fedwire accounts for roughly two thirds of the transaction volume in the

U.S. The majority of the rest of transactions are mainly settled through Clearing House Interbank

Payments System (CHIPS) of 43 members, which, unlike Fedwire, allows netting (potentially at

the expense of inducing greater counterparty risks) and therefore does not fit our setting where

payments are settled on gross terms without counterparty risks. In Appendix A, we provide more

details on the structure U.S. payment system. Bech and Hobijn (2007) provide an overview on the

adoption of real-time gross settlement (RTGS) across countries.

The Federal Reserve maintains accounts for both senders and receivers and settles individual

transactions immediately without netting. For each transaction, the Fedwire data provide informa-

tion on the time and date of the transaction, identities of sender and receiver, payment amount, and

transaction type. We focus on transactions instructed by customers, which are out of the banks’

control as in our theoretical model. In particular, we exclude bank-scheduled transfers and banks’

purchases and sales of federal funds. Customer-initiated transactions make up about 85% of trans-

actions (in terms of number of transactions). We obtain data on bank balance sheets and income

statements from U.S. Call Report. We merge the Fedwire data with the Call Report data using Fed-

eral Reserve’s internal identity system. Our merged sample covers 83% of banks in Call Report

(in terms of total assets). We provide the summary statistics in Table D.1 in the appendix.
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We set up our empirical specification following the solution of yi in (11) of the market

equilibrium. Our estimation is based on a quarterly sample. To maintain the standard econometric

assumptions of stationarity and ergodicity of data generating processes (Hayashi, 2000), we use

banks’ quarterly loan growth rates instead of loan amounts. Therefore, we divide both sides of (11)

by the loan amount at t− 1 to obtain the loan growth rate of bank i at t, denoted by ni,t

ni,t ≡
yi,t
yi,t−1

= ϕ
∑
j ̸=i

wij
yj,t
yi,t−1

+
ai,t
yi,t−1

. (29)

To simplify the notation, we use a′i,t to denote ai,t/yi,t−1. For the decomposition in (19), we have

a′i,t = ᾱ′
i + ν ′

i,t , (30)

where, ᾱ′
i = ᾱi/yi,t−1, and the shock, ν ′

i,t, has a zero mean and a conditional variance δ
′2
i (δ′

i =

δi/yi,t−1). In our quasi-MLE estimation, the parameters enter the probability density of ni,t condi-

tional on yi,t−1, and the joint likelihood is the product of conditional probability densities.

Next, we substitute bank j’s loan growth rate, nj,t =
yj,t

yj,t−1
in (29) to obtain:

ni,t = ϕ
∑
j ̸=i

w′
ijnj,t + ᾱ′

i + ν ′
i,t , (31)

where the loan amount-adjusted adjacency matrix, denoted by W′, has the ij-th element given by

w′
ij ≡ wij

yj,t−1

yi,t−1

. (32)

To obtain w′
ij for quarter t, we calculate wij following the definition (13) and adjust it by

the lagged loan amounts of bank i and j as in (32). The statistics in wij , µij , µji, ρij , σij , σji, are,
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Figure 1: Distribution of gij . This figure reports the frequency distribution of gij . The x-axis shows the logarithm
(base 10) of gij (for example, −2 corresponds to −0.01) and the y-axis shows the fraction of observations in a bin.

respectively, the mean of daily observations of gij in quarter t−1, the mean of daily observations of

gji in quarter t−1, the correlation between the daily observations of gij and gij in quarter t−1, the

standard deviation of daily observations of gij in quarter t− 1, and the standard deviation of daily

observations of gji in quarter t − 1. Following the theoretical definitions, we scale the payment

flows by bank i’s deposit stock at the beginning of the quarter to obtain gij . We construct these

payment statistics from the lagged quarter to reflect the predeterminancy of the network. In figure

1, we report the frequency distribution of gij .

A key target of our estimation is the parameter ϕ. An estimate of ϕ that is statistically sig-

nificant from zero suggests that the network as a whole has a significant impact on bank lending.

And, together with the network adjacency matrix, W′, the parameter ϕ determines whether bank

lending decisions are strategic complements or substitutes. Instead of directly estimating the equi-

librium condition (31) using observations of loan growth rates, we recognize that empirically, a
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bank’s lending decisions depend on bank characteristics and macroeconomic variables outside of

our theoretical model. Specifically, our empirical model of loan growth rate has two components,

qi,t that is outside of model of liquidity percolation in the payment system, and ni,t, which is the

component dependent on the payment network and modelled in Section 2.

In data, we only observe li,t = qi,t + ni,t. However, by observing bank characteristics (de-

noted by xm
i,t) and macroeconomic variables (denoted by xp

t ) that drive qi,t, we are able to estimate

the network attenuation factor, ϕ, effectively using the residuals of li,t. In our estimation, the

bank characteristics include the logarithm of total assets, the ratio of liquid securities (reserves and

available-for-trade securities) to total assets, the ratio of equity capital to total assets, the ratio of

deposits to total assets, the ratio of loans to total assets, the return on assets, and the macroeco-

nomic variables (from FRED) include the change in effective federal funds rate (EFFR), real GDP

growth, inflation, stock market return, and housing price growth.28 All control variables are lagged

by one quarter for predeterminancy. We also include the constant as a control variable. We provide

the summary statistics in Table D.1 in the appendix.

In sum, our empirical model of the observed loan growth rate is

li,t =
M∑

m=1

βbank
m xm

i,t +
P∑

p=1

βmacro
p xp

t + ni,t, (33)

where, according to (31), we have that

ni,t = ϕ
∑
j ̸=i

w′
ijnj,t + ᾱ′

i + ν ′
i,t ν ′

i,t ∼ N
(
0, δ

′2
i

)
. (34)

Equation (33) and (34) together constitute a spatial error model (SEM) (e.g., Anselin, 1988; El-

28The stock market return is the quarterly change of the Wilshire 5000 Total Market Index (a market-capitalization-
weighted index of the market value of all American-stocks actively traded in the United States). The housing price
growth is the quarterly change of the S&P/Case-Shiller U.S. National Home Price Index.
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horst, 2010). Such models allow the joint estimation of β coefficients in the observational equation

(33), and ᾱ′
i, δ

′2
i , and ϕ in the error (or residual) equation (34). Therefore, even though the econo-

metrician does not observe ni,t directly, the parameters of the network game can still be recovered.

We can rewrite the system of (33) and (34) in vector form:

ℓt = Xtβ + nt, (35)

and

nt = ϕW′nt + ᾱ′ + ν ′
t . (36)

Following Proposition 1, we require that |ϕλmax(W′)| < 1, where the function λmax (·) returns the

largest eigenvalue. Under this restriction, we have

nt = (I− ϕW′)
−1

(ᾱ′ + ν ′
t) . (37)

Bank characteristics and macroeconomic variables absorb part of the variation in loan growth

rates and only leave the residual variation for identifying the network effect, ϕ, and the other

parameters of the network game. This is a conservative approach because any peer effects (or

comovement) related to these bank characteristics or common loadings on macroeconomic factors

are controlled for, and we only use the residual variations to estimate the parameters of the network

lending game. In the next subsection, we provide more details on parameter identification.

Given the strong heterogeneity in bank sizes, w′
ij = wijyj,t−1/yi,t−1, can be large if bank i is

much smaller than bank j, which then implies that for small banks, the network-dependent com-

ponent, ni,t, mechanically accounts for a large share of loan growth relative to qi,t (the component

determined by bank characteristics and macroeconomic variables). Our model does not address
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the relative importance of ni,t and qi,t in driving loan growth. We only use the bank characteristics

and macroeconomic variables as control variables to absorb loan growth variations from previously

studied mechanisms. Therefore, we normalize W′ to be right-stochastic (i.e., to have all row sums

equal to one or W′1 = 1) by dividing w′
ij by the i-th row sum so that the relative contributions of

ni,t and qi,t are not mechanically driven by bank sizes. Moreover, normalizing W′ also prevents

the estimation of ϕ from being disproportionately influenced by the small banks’ loan growth.

We estimate the parameters ϕ, ᾱ′, δ′, and β by maximizing the following joint likelihood that

is derived by equations (35) and (36):

−T

2
ln
(
(2π)N |∆′|

)
− 1

2

T∑
t=1

[(I− ϕW′) (ℓt −Xtβ)− ᾱ′]
⊤
∆′−1 [(I− ϕW′) (ℓt −Xtβ)− ᾱ′] ,

where N is the number of banks, T is the total number of quarters, ∆′ is a diagonal matrix with

the i-th diagonal element equal to δ′2i , and |∆′| is the determinant of ∆′. When the shocks ν ′
t

are normally distributed, the estimator is the maximum likelihood estimator (MLE) and has the

textbook properties of consistency and asymptotic normality. When the shocks are not normally

distributed, the estimator is the quasi-MLE. Because the score of the normal log-likelihood has the

martingale difference property when the first two conditional moments are correctly specified, the

quasi-MLE is consistent and has a limiting normal distribution (Bollerslev and Wooldridge, 1992).

We follow Bollerslev and Wooldridge (1992) to calculate the asymptotic standard errors that are

robust to the non-normality of shocks.

3.2 Parameter identification

To fix intuition about how the key network parameter, ϕ, is recovered from the data, it is useful

to consider a simplified version of the model in equations (33) and (34). Our analysis follows
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(Denbee, Julliard, Li, and Yuan, 2021). Let Lt ∈ RN denote the vector containing loan growth

rates of individual banks at quarter t, and to simplify exposition let us disregard the fixed effects,

ᾱ′
i, in equation (34) and assume that the network matrix has constant weights W′. The model given

by (35) and (36) can be rewritten in vector form:

ℓt = Xtβ + nt, nt ∼ N (0N ,Ω) , (38)

where 0N denotes a N -dimensional vector of zeros, Ω = M∆′M⊤ with M = (I− ϕW′)−1,

∆′ is a diagonal matrix with elements given by
{
δ
′2
i

}N
i=1

. In deriving the covariance Ω, we used

equation (34), i.e., that in equilibrium we can rewrite nt (having, for now, removed ᾱi) as nt =

(I− ϕW′)−1 ν ′
t, where ν ′

t has a distribution with zero mean and a diagonal covariance matrix ∆′.

The reduced form specification in (38) has the same structure and properties as the Seemingly

Unrelated Regressions (SUR, see e.g. Zellner (1962)). Hence, one can consistently estimate the

mean equation parameters, β, (e.g., via linear projections), and use the fitted residuals to construct

a consistent estimator of covariance matrix Ω. Note that if we knew the parameters ϕ and
{
δ
′2
i

}N
i=1

we could actually premultiply the specification in equation (38) by the Cholesky decomposition

of Ω−1, obtaining a transformed system with spherical errors, and therefore gaining efficiency of

the estimates – e.g., we could do the canonical GLS transformation. For this reason, rather than

employing a two-step procedure, we jointly estimate the mean equation and covariance parameters

by maximizing the quasi-maximum likelihood function.

The key question is whether we can recover the structural parameters ϕ and
{
δ
′2
i

}N
i=1

. Be-

ing symmetric, the estimated Ω̂ gives N(N + 1)/2 equations, while we have to recover N + 1

parameters in M∆′M⊤. Therefore, as long as Ω is full-rank, the system is over-identified if we

have three or more banks (with linearly independent links). In a nutshell, the identification of this
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spatial error formulation works as that of structural vector autoregressions (Sims and Zha, 1999)

where the contemporaneous propagation of shocks among dependent variables (captured by ϕ in

our setting) can be recovered from the reduced-form covariance structure.29 Note that what al-

lows the identification of ϕ and
{
δ
′2
i

}N
i=1

are exactly the following two properties: (1) the observed

loan growth rate, li,t, can be decomposed into qi,t, driven by the control variables Xt, and ni,t, the

component dependent on the payments; (2) Proposition 1 states how the network component ni,t

depends on the structural shocks in equilibrium. The first restriction defines the mean equation in

(38), allowing us to recover ni,t as residuals.30 The second restriction imposes a structure on the

covariance matrix of ni,t, allowing us to recover ϕ and
{
δ
′2
i

}N
i=1

.

To sharpen the intuition, let us consider a system of three banks and the simplest network, a

chain: Bank 1 borrows from Bank 2, and 2 from 3, so

W′ =


0 1 0

0 0 1

0 0 0

 , and M∆′M⊤ =


δ
′2
1 + ϕ2δ

′2
2 + ϕ4δ

′2
3 ϕδ

′2
2 + ϕ3δ

′2
3 ϕ2δ

′2
3

ϕδ
′2
2 + ϕ3δ

′2
3 δ

′2
2 + ϕ2δ

′2
3 ϕδ

′2
3

ϕ2δ
′2
3 ϕδ

′2
3 δ

′2
3

 .

The volatility of n1 is δ′2
1 +ϕ2δ

′2
2 +ϕ4δ

′2
3 . The first term is the volatility of Bank 1’s structural shock,

ν ′
1. The second term is the volatility of Bank 2’s structural shock transmitted by one step to Bank 1,

i.e., ϕn2, and the third term reflects Bank 3’s shock transmitted by two steps (via Bank 2) to Bank

1, i.e., ϕ2n3. By the same logic, the volatility of n2 is δ
′2
2 + ϕ2δ

′2
3 , capturing Bank 2’s exposure

to its own shock and Bank 3’s shock, while Bank 3 only loads on its own shock. The covariance

between z1 and z2 is ϕδ′2
2 +ϕ3δ

′2
3 , reflecting Bank 1’s and 2’s exposure to Bank 2’s and 3’s shocks.

29For an extensive discussion of estimation and identification of spatial models see Anselin (1988), and chapter 8 in
particular for the Spatial Error Model.

30Ideally, if we were to observe qi,t and ni,t separately, we could estimate ϕ and
{
σ2
i

}N
i=1

only using the data on
ni,t. But as econometricians we only observe li,t = qi,t + ni,t and the control variables that drive qi,t, so we estimate
ϕ and {δ′2

i }Ni=1 and the control variables’ coefficients jointly.
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The covariance between z2 and z3 is ϕδ′2
3 as it only arises from the one-step transmission of Bank

3’s shock to Bank 2, i.e., ϕz3. Such covariances are due to network connections, and their estimates

identify the network effect parameter, ϕ. Given δ
′2
3 = {Ω̂}3,3, we can solve for ϕ using either the

covariance between n1 and n3, i.e., {Ω̂}1,3 = ϕ2δ
′2
3 , or the covariance between n2 and n3, i.e.,

{Ω̂}2,3 = ϕδ
′2
3 , so the system is clearly over-identified. Moreover, given the estimates of δ′2

3 and

ϕ, either the volatility of n2, i.e., {Ω̂}2,2 = δ
′2
2 + ϕ2δ

′2
3 , or the covariance between n1 and n2, i.e.,

{Ω̂}1,2 = ϕδ
′2
2 + ϕ3δ

′2
3 , give a solution for δ′2

2 . Finally, given ϕ, δ′2
2 , and δ

′2
3 , {Ω̂}1,1 pins down δ

′2
1 .

A key identifying assumption is that the structural shocks, ν ′
i, are independent across banks,

and thus, after controlling for the observed bank characteristics and macro variables, the residuals’

(i.e., ni’s) correlations only arise from the network linkages. Therefore, the impact of network, ϕ,

is identified by such correlations. Accordingly, in the estimation, we saturate the mean equation

by controlling for a rich set of bank characteristics, so the residual correlations are driven by the

network linkages instead of missing variables that induce comovement among banks’ decisions.31

3.3 Systemic risk

In our model, shocks are realized before banks’ lending decisions and, after banks choose the

loan amounts, the shocks are propagated through the payment network. The system given by

equations (35) and (36) highlights the propagation mechanism: A shock to bank j is transmitted to

bank i through ϕw′
ij,t, so if ϕw′

ij,t > 0 (strategic complementarity), the network amplifies shocks,

and if ϕw′
ij,t < 0 (strategic substitution), the network buffers shocks. Given the realized shocks,

ν ′
t =

[
ν ′
1,t, ..., ν

′
n,t

]⊤, the ultimate impact of shocks to all banks is given by the following vector

ϵt = (I− ϕW′)
−1

ν ′
t = M (ϕ,W′) ν ′

t , (39)

31This identification argument is not affected by time variation in G as long as we have a well-defined unconditional
variance. This case is analogous to the one of S-VARs with time-varying volatility as, e.g., in Primiceri (2005).
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where the matrix M (ϕ,W′) records the routes that propagate the shocks:

M (ϕ,W′) ≡ I+ ϕW′ + ϕ2W
′2 + ϕ3W

′3 + ... =
∞∑
k=0

ϕkW′k = (I− ϕW′)
−1

, (40)

where the first term captures direct effects of shocks, the second is the sum of direct outbound

links, the third element is the sum of second-order links, and so on.

Consider unitary shocks to all banks. W′ being right-stochastic (i.e., W′1 = 1) implies

ϵt = (I− ϕW′)
−1

1 = M (ϕ,W′)1 = I+ ϕW′1+ ϕ2W
′21+ ϕ3W

′31+ ... =
1

1− ϕ
1 . (41)

Therefore, the network attenuation factor, ϕ, can serve as a proxy for the strength of network

amplification mechanism. In the following, we define the network multiplier.

Definition 1 (Network Multiplier) The network multiplier is defined as 1
1−ϕ

.

Given the estimates of ϕ, ᾱ′
i, and δ′2i , we use our structural model to identify systemically

important banks. There are two ways to measure a bank’s systemic importance. First, we consider

the scenario of small shocks where all banks stay solvent. In this case, a bank is systemically

important if its shock has a disproportionately large impact on the aggregate credit supply. We

call such bank the volatility key bank as our approach provides a decomposition of credit-supply

volatility into different banks’ contributions. The second way to measure a bank’s systemic impor-

tance is to consider a more dramatic scenario where the bank fails and exits the system. In such a

crisis, a bank is systemically important if its removal causes a disproportionately large decline in

aggregate credit supply. We call such bank the insolvency key bank. Such crisis scenario is outside

of our model in Section 2, so the removal of a bank can be regarded as an unexpected event.

First, we present the framework for identifying the volatility key bank. Let Nt denote the
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network-dependent component of aggregate credit supply. Note that our estimation uses the loan

growth rates rather than the loan amounts, so, the link between Nt and the network-dependent

component of loan growth rate is given by

Nt =
N∑
i=1

yi,t−1ni,t = y⊤
t−1nt . (42)

Substituting in the solution of nt in (37), we obtain

Nt = y⊤
t−1 (I− ϕW′)

−1
(ᾱ′ + ν ′

t) = y⊤
t−1M (ϕ,W′) (ᾱ′ + ν ′

t) . (43)

Before the shocks are realized, we calculate the conditional mean of Nt,

Et−1[Nt] = y⊤
t−1M (ϕ,W′) ᾱ′ , (44)

and the conditional variance of Nt,

Vart−t (Nt) = y⊤
t−1M (ϕ,W′)∆′M (ϕ,W′)

⊤
yt−1 , (45)

where ∆′ is the covariance matrix of ν ′
t, a diagonal matrix whose i-th diagonal element is δ′2

i . The

conditional mean and variance of aggregate credit supply characterize in expectation the strength

of the payment network in generating bank credit provision and propagating shocks. Next, we

define the volatility key bank through the network impulse response function.

Definition 2 (Network Impulse Response Function and Volatility Key Bank) The impulse re-
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sponse of aggregate credit supply to a one standard-deviation shock to a bank i is given by

NIRFi,t−1 (ϕ, δ
′
i,W

′) ≡ ∂Nt

∂ν ′
i,t

δ′i = y⊤
t−1 {M (ϕ,W′)}.i δ

′
i (46)

where the operator {}.i returns the i-th column of its argument. The volatility key bank, given by

i∗t−1 = argmax
i∈{1, ..., N}

NIRFi,t−1 (ϕ, δ
′
i,W

′) , (47)

is the one that contributes the most to the conditional volatility of aggregate credit growth.

A bank’s NIRF records the impact of its shock on the aggregate credit supply. It depends on

the network attenuation factor, ϕ, the network topology given by W′, and the size of the bank’s

shock, δ′i. Our estimation method allows us to identify both ϕ and δ′i. Next, we show that NIRFs

measure banks’ contributions to the conditional volatility of aggregate credit supply and thus iden-

tifies the volatility key bank by providing a clear ranking of each bank’s volatility contribution.

Proposition 3 (Credit-Supply Volatility Decomposition) The network impulse response functions

(NIRFs) decompose the conditional volatility of aggregate credit supply:

Vart−t (Nt) = vec
(
{NIRFi,t−1 (ϕ, δ

′
i,W

′)}Ni=1

)⊤
vec
(
{NIRFi,t−1 (ϕ, δ

′
i,W

′)}Ni=1

)
, (48)

where “vec” is the vectorization operator.

Next, we define insolvency key bank, whose removal causes the largest reduction in aggre-

gate credit supply in expectation. Our definition is in the same spirit as the concept of key agent

in the literature on crime network (e.g., Ballester, Calvo-Armengol, and Zenou, 2006) where tar-

geting key agents is important for crime reduction. Here, it is useful to consider the ripple effect
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on aggregate credit supply when a bank fails and exits from the system. Bailing out the insolvency

key bank might be necessary to avoid major disruptions to the aggregate credit supply.

Definition 3 (Insolvency Key Bank) The insolvency key bank τ ∗t−1 is the bank that, when re-

moved, causes the maximum expected reduction in aggregate credit supply conditional on infor-

mation at t − 1. We use W′
−τ to denote the new adjacency matrix obtained by setting to zero all

elements of W′’s τ -th row and column. The insolvency key bank τ ∗ is found by solving

τ ∗t−1 = argmax
τ∈{1,...,N}

Et−1

[
N∗

t (ϕ, ᾱ
′,W′)−N∗

t

(
ϕ, ᾱ′,W′

−τ

)]
(49)

where Et−1 is the conditional expectation operator and the network-dependent credit supply is

N∗
t (ϕ, ᾱ

′,W′) =
N∑
i=1

yi,t−1n
∗
i,t (ϕ, ᾱ

′,W′) , and, N∗
t

(
ϕ, ᾱ′,W′

−τ

)
=
∑
i ̸=τ

yi,t−1n
∗
i,t

(
ϕ, ᾱ′,W′

−τ

)

with the network-dependent loan growth rate, n∗
i,t (ϕ, ᾱ

′,W′) and n∗
i,t

(
ϕ, ᾱ′,W′

−τ

)
solved in (37).

We define insolvency key bank under the assumption that bank removal does not immediately

trigger the formation of new linkages. Hence, we capture the short-run effects of a bank’s sudden

failure. Since we do not observe bank failure in our sample, we cannot provide a precise time frame

for link formation after removal. Our definition can still be operational from a policy perspective,

especially during a crisis when link formation becomes less likely under bank customers’ concern

over bank solvency. Using equation (37), we derive the following proposition that directly links

the identification of insolvency key bank to the parameters of the network lending game.
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Proposition 4 (Solving Insolvency Key Bank) Bank τ ∗ is the insolvency key bank if and only if

τ ∗t−1 = argmax
τ∈{1,...,N}

yτ,t−1{M(ϕ,W′)}τ.ᾱ︸ ︷︷ ︸
Indegree effect

+y⊤
t−1{M (ϕ,W′)}.τ ᾱτ︸ ︷︷ ︸

Outdegree effect

− yτ,t−1{M(ϕ,W′)}ττ ᾱτ︸ ︷︷ ︸
Double counting correction

,

(50)

where {}τ. and {}.τ are the operators that return, respectively, the τ -th row and τ -th column of the

argument and {M(ϕ,W′)}ττ is the τ -th element of the diagonal of the matrix M(ϕ,W′).

When bank τ is removed, its credit supply disappears from the system. This is the first

component (indegree effect) which depends on the bank’s own ᾱτ and neighbors’ through the

routes to τ , i.e., {M(ϕ,W′)}τ.. The second component reflects bank τ ’s impact on other banks

(outdegree effect). Its own ᾱτ is multiplied by the sum of routes from τ to neighbors (scaled by

the previous loan amounts), i.e., y⊤
t−1{M(ϕ,W′)}τ.. This outdegree effect captures the network

externalities (i.e., the liquidity externality and hedging externality discussed in Section 2). Iden-

tifying the insolvency key bank metric helps policy makers to decide on which bank to rescue to

sustain the aggregate credit supply. Such a decision depends on a bank’s own contribution to the

aggregate credit supply and the spillover effects through the network linkages. As in the volatility

key bank metric, focusing on the network alone is not enough. Both the attenuation factor ϕ and

bank-specific level effects, captured by ᾱi, are inputs in identifying the insolvency key bank.

3.4 Comparing the planner’s solution and market equilibrium

We compare the conditional expectation and conditional volatility of aggregate credit supply from

the market equilibrium and those from the planner’s solution. First, we show how to utilize the
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parameter estimates in calculating the planner’s solution. Following Section 3.1, we define

w̃′
ij = w̃ij

yj,t−1

yi,t−1

, (51)

where w̃ij is defined in (25), and

µ′
ij = µij

yj,t−1

yi,t−1

. (52)

The network-dependent component in the planner’s solution (53) can be written as

ñi,t =ϕ̃i

∑
j ̸=i

w̃′
ijñj,t − ϕ̃i

∑
j ̸=i

µij

(∑
k ̸=j

µ′
kjñk,t

)
+ ã′i,t (53)

where ϕ̃i =
(

1
ϕ
+

σ2
−i

σ2
−i+µ2

−i

)−1

is defined (24) and ã′i,t ≡ ãi,t/yi,t−1 (ãi,t given by (26)). Following

Section 2.3, let W̃′ and U′ denote the matrices whose the ij-th elements are equal to w̃′
ij and µ′

ij ,

respectively. Let ã′
t denote the vector for ã′i,t, i = 1, ... N . And, let Φ̃ denote the diagonal matrix

with the i-th diagonal element equal to ϕ̃i. In vector form, we have:

ñt = Φ̃
(
W̃′ −UU′⊤

)
ñt + ã′

t . (54)

The planner’s choice of individual banks’ lending can be solved as follows:

ñt = M̃
(
Φ̃,W̃′,U,U′

)
ã′
t . (55)

where we define

M̃
(
Φ̃,W̃′,U,U′

)
≡
(
I− Φ̃W̃′ + Φ̃UU

′⊤
)−1

. (56)

Next, we explain how to calculate the planner’s solution with payment data and parameters
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from our estimation of market equilibrium. Following the calculation of wij of the market equilib-

rium in Section 3.1, we calculate w̃ij following the definition (25) using the statistics of payment

flows in quarter t − 1 and obtain µij by calculating the average of gij in quarter t − 1. µ′
ij is cal-

culated following (52). Following Section 2.3, we normalize W̃′ − UU′⊤ to be right-stochastic.

We calculate ϕ̃i using the estimate of ϕ and the payment statistics, σ2
−i and µ−i (see Section 3.1).

To compute the mean and standard deviation of ã′i,t, we solve the connection between ã′i,t in the

planner’s solution and a′i,t in (30) of the market equilibrium:

ã′i,t =
ãi,t
yi,t−1

= b′i,t +
ϕ̃i

ϕ
a′i,t , (57)

where,

b′i,t ≡
ϕ̃i

(σ2
−i + µ2

−i)

[(
τ1 − θ1
τ2 − θ2

)
µ−i

yi,t−1

−
(

τ2
τ2 − θ2

)∑
j ̸=i

µij
mj

yi,t−1

]
. (58)

We rewrite the planner’s solution (55) in vector form:

ñt = M̃
(
Φ̃,W̃′,U,U′

)
b′
t−1 + M̃

(
Φ̃,W̃′,U,U′

) 1

ϕ
Φ̃ a′

t . (59)

The network-dependent component of aggregate credit supply in the planner’s solution is

Ñt =
N∑
i=1

yi,t−1ñi,t = y⊤
t−1ñt . (60)

After obtaining the estimates of ϕ, ᾱ′
i (the mean of a′i,t) and δ′i (the volatility of a′i,t), we compute

the mean and volatility of second term in ã′i,t and thus obtain the conditional mean and volatility of

the second term in ñt. Because the first term in ñt (i.e., M̃(Φ̃,W̃′,U,U′)b′
t−1) does not contribute
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to the conditional volatility, we can solve the conditional volatility of the planner’s solution of Ñt:

Vart−1

[
Ñt

]
=

1

ϕ2
y⊤
t−1M̃

(
Φ̃,W̃′,U,U′

)
Φ̃2∆′M̃

(
Φ̃,W̃′,U,U′

)⊤
yt−1, (61)

where, as previously defined, ∆′ is a diagonal matrix with the i-th diagonal element equal to δ
′2
i .

The calculation of the conditional mean of Ñt,

Et−1

[
Ñt

]
= y⊤

t−1M̃
(
Φ̃,W̃′,U,U′

)
b′
t−1 + y⊤

t−1M̃
(
Φ̃,W̃′,U,U′

) 1

ϕ
Φ̃ ᾱ′ , (62)

requires the first term in ã′i,t, and the first term in ã′i,t depends on the parameters, τ1, τ2, θ1, and

θ2 that cannot be separately identified in our estimation (as we only estimate ϕ = τ2−θ2
κ+τ2−θ2

de-

fined in (12)). Therefore, when comparing the conditional mean of Nt of the market equilibrium

and the conditional mean of Ñt of the planner’s solution, we focus on the second component

of Et−1[Ñt] that can be computed from our parameter estimates. Moreover, the second com-

ponent, y⊤
t−1M̃(Φ̃,W̃′,U,U′) 1

ϕ
Φ̃ ᾱ′, is more comparable to the market-equilibrium counterpart,

Et−1[Nt] = y⊤
t−1M (ϕ,W′) ᾱ′ in (44) because the only differences are in the network propagation

(i.e., M̃(Φ̃,W̃′,U,U′) vs. M (ϕ,W′)) and the deviations of ϕ̃i from ϕ (captured by 1
ϕ
Φ̃).

4 Estimation Results

4.1 The network multiplier

In this section, we present our empirical results. Table 1 reports the estimate of the key parameter

ϕ, the network attenuation factor and the implied network multiplier. Our estimation is done on

different subsamples of banks ranked by the size of their deposit liabilities. The main specification
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Number of Banks: 500 500
( Not winsorized )

300 400 600 700

ϕ̂ 0.1452
(3.44)

0.1377
(3.43)

0.1499
(3.16)

0.1562
(3.42)

0.1396
(3.17)

0.1373
(3.06)

1/
(
1− ϕ̂

)
1.1698 1.1597 1.1764 1.1852 1.1623 1.1591

R2 0.1139 0.1138 0.1205 0.1150 0.1183 0.1167

Table 1: Network multiplier. The table reports the estimate of ϕ in the system of equations (33) and (34). The
t-statistics are calculated with quasi-MLE robust standard errors and are reported in parentheses under the estimated
coefficients. The network multiplier, 1/(1−ϕ̂), is reported in the second line, and the R2 in the third line is the fraction
of variation explained by the control variables (i.e., the bank characteristics and macroeconomic variables).

includes the top 500 banks, and the results are reported in the first column. In the second column,

we show that the results are similar without winsorizing gij at 0.5% for the calculation of the

payment-flow statistics (such as µij , σij , and ρij). In the last four columns, we report the results

based on top 300, 400, 600, and 700 banks and show that the results are similar.

A key finding is that ϕ is positive and the network multiplier is greater than one. As discussed

in Section 3.1, under ϕ > 0 or 1/(1 − ϕ) > 1, the network amplifies unitary shocks to all banks

by the amount of 1/(1 − ϕ) − 1. For example, an estimate of ϕ equal to 0.1452 (and a network

multiplier equal to 1.1698) implies that the network amplifies the shocks by around 17%. The

finding of a stable estimate of ϕ across different numbers of banks shows robust network effects

that are not drive by a (core) subset of banks of large sizes.32

The finding of ϕ > 0 also suggests that the bank liquidity management channel dominates

the customer liquidity management channel. As previously discussed in Section 2, the key fea-

ture of the two-layer payment system is that when payment outflows happen, a bank experiences

reserve outflows and its depositors experience deposit outflows. The former implies a cost on the

bank, while the latter implies an increase in the customers’ marginal value of liquidity and future
32The network adjacency matrix, W′, is independently constructed for each subsample with only banks in the

subsample as nodes on the network.
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Figure 2: The estimates of ᾱ′
i and δ′i. This figure reports the frequency distribution of the estimates of ᾱ′

i (Panel
A) and δ′i (Panel B) across different samples of banks ranked by the size of deposit liabilities.

lending opportunities for the bank. When ϕ > 0, which implies τ2 > θ2, the bank’s marginal

cost of losing liquidity dominates the marginal benefit of having more lending opportunities in the

future. Moreover, as discussed in Section 2.2, the sign of ϕw′
ij determines whether banks’ lending

decisions are strategic complements or substitutes. In our sample, there are only 0.39% of non-zero

w′
ij being negative.33 Therefore, a positive estimate of ϕ indicates strategic complementarity.

We have hundreds of banks (i.e., hundreds of ᾱ′
i and δ′i) in each sample, and the samples

differ in the number of ᾱ′
i and δ′i, so it is more convenient to compare the estimation of ᾱ′

i and

δ′i through the frequency distribution in Figure 2. The figure shows that across subsamples, the

distributions of these parameters are fairly consistent, which again suggests the robustness of equi-

librium characteristics of the network lending game to the selection of subsamples of banks ranked

by deposit sizes. We report the estimates of control variable coefficients in Table D.2 and show

33Among all the potential pairs, there are 6.47% have non-zero w′
ij .
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Figure 3: Network propagation and aggregate credit supply. This figure reports the mean (Panel A) and
volatility (Panel B) of aggregate credit supply conditional on the outstanding loan amounts of the previous period (i.e.,
{yi,t−1}Ni=1). In both panels, the statistics are decomposed into each round of network propagation. We show results
based on our data network and a counterfactual network where all banks are equally connected (i.e., w′

ij = 1/(N−1)).

that these estimates are statistically close in Figure D.1 in the appendix.

In the following, our analysis is based on the sample of top 500 banks. We analyze the impact

of network externalities on aggregate credit supply. Equation (40) shows that under ϕ > 0, each

round of network propagation amplifies banks’ responses in loan growth to their own and other

banks’ expected levels (ᾱ′
i) and shocks (ν ′

i,t). Therefore, aggregate credit supply depends on both

the expected levels and shocks of individual banks, i.e., the standalone (network-independent) loan

growth, but more importantly, the network, W′, and the network attenuation factor, ϕ.

In Figure 3, we decompose the mean (Panel A) and volatility (Panel B) of aggregate credit

supply conditional on the previous period’s bank lending equal to the sample average. In both

Panel A and Panel B, the first column shows the standalone (network-independent) value and each
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subsequent column corresponds to the cumulative effect after each round of network propagation.

For the network adjacency matrix, W ′, we use the average across the 44 quarters in our sample.

For both conditional mean and volatility, the second and third columns correspond respectively to

the direct network linkages and the first layer of indirect network linkages. Both direct and indirect

linkages have significant influence on the equilibrium level of aggregate credit supply. Linkages

that are more than two steps away are relatively less important. The key to this feature is the value

of ϕ. The smaller ϕ is, the weaker effects of distant network linkages, because as shown in (40), ϕ

determines the discount factor for network linkages.

In Figure 3, we also explore the importance of network topology in determining the network

propagation mechanism. In the counterfactual network, which we call the uniform network, banks

are equally connected (i.e., w′
ij = 1/(N − 1)). In Panel A, relative to the hypothetical uniform

network, the data network generates a lower expected level of aggregate credit supply, and in each

round of network propagation, the cumulative effects of the hypothetical network are dominated

those of the uniform network. In Panel B, relative to the uniform network, the data network gener-

ates a higher volatility of aggregate credit supply. Note that in both panels, the first columns under

the two networks have the same value because they represent the standalone values without net-

work propagation. The divergence happens starting the first round of network propagation. While

both networks generated a similar expected level, the volatility difference is large in magnitude. In

our sample of top 500 banks, the average of aggregate bank lending is $6.4 trillion. We calculate

the annualized standard deviation by multiplying the quarterly value of $54 billions per quarter in

Panel B of Figure 3 by 4. Therefore, the annualized volatility generated by the payment network is

54×4/6400 = 3.4%. In contrast, the counterfactual network of equally connected banks generates

an annualized volatility of 2.8% (implied by $45 billions in Panel B of Figure 3).

In Figure 5, we compare the data network given by the average adjacency matrix W ′ and
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Figure 4: Network topology. This figure compares the data networks given by the average adjacency matrix W ′

in our sample and the hypothetical uniform network. The size of node i is proportional to δ′i (the volatility of structural
shock to loan growth). We apply the algorithm in Fruchterman and Reingold (1991): Linked nodes should be close
and notes should be distributed widely for visibility.

the uniform network. The size of node i is proportional to δ′i (the volatility of bank-specific shock

to loan growth). The most connected nodes are placed at the center while the least connected at

the periphery (Fruchterman and Reingold, 1991). The distribution of edges (linkages) of the data

network is much more uneven, suggesting less heterogeneity in banks’ network positions.

The topology of payment network directly affects the aggregation of bank-level (granular)

shocks. As emphasized by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), network

propagation may cause the law of large numbers to fail on the aggregation of idiosyncratic shocks

as the number of nodes goes to infinity. While we cannot examine the asymptotic behavior as

our sample contains a finite number (500) of banks, we show in Figure 5 that the data network

generates fatter tails than the uniform network. Specifically, we simulate 10,000 times a vector of

500 i.i.d. standard normal shocks. For each simulation, we calculate the simple average (which
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Figure 5: Network and fat tails. We simulate 10,000 times a vector of 500 i.i.d. standard normal shocks and, for
each simulation, we calculate the average of the shocks and the averages of shocks (denoted by ν) amplified by two
networks, i.e., the averages of vector (I − ϕG)−1ν where the two networks are G = W′ (the data network) and the
uniform network. The figure reports the frequency distribution of the averages of 10,000 simulations.

has a standard deviation of
√

1
500

= 0.045) and the average of shocks (denoted by ν) amplified by

the two networks, i.e., the averages of vector (I − ϕG)−1ν where the two networks are G = W′

(the data network) and the uniform network. The figure reports the frequency distribution of the

and shows fatter tails from the shock propagation of the payment network.

4.2 Volatility key bank

We define volatility key bank in (46) as the bank with the highest network impulse response func-

tion (NIRF) and, in (48), we show that the volatility of (network-dependent component of) aggre-

gate credit supply conditional on the lending distribution in the previous period (i.e., {yi,t−1}Ni=1)

can be decomposed into individual banks’ NIRFs. Therefore, ranking banks by their NIRFs is
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Figure 6: Bank shock size and NIRF. In this figure, we plot the size of bank-specific shock, δ′i, and network
impulse response function (NIRF) for the five hundred banks in our sample.

equivalent to ranking banks by their contributions to credit-supply volatility. Next, we analyze

how banks’ positions in the network given by the adjacency matrix, W′, and the sizes of their

structural shocks, {δ′2i }Ni=1 determine their NIRFs. As shown in Figure 5, banks differ significantly

in both aspects. Therefore, we expect to see strong cross-section heterogeneity in NIRFs.

In Figure 6, we plot the loan amount implied by size of bank-specific shock to loan growth

rate (i.e., yi,t−1δ
′
i), and network impulse response function (NIRF) for the top five hundred banks

by deposit size. For both quantities, we set the loan amounts from the previous period, yi,t−1, to the

sample average. When yi,t−1δ
′
i and NIRF are close for a bank, the payment network does not have

a significant effect on the bank’s contribution to the volatility of aggregate credit supply. In other

words, what the bank contributes is close in magnitude to the size of its own shock. In contrast,

when NIRF and yi,t−1δ
′
i are very different for a bank, the bank’s position in payment network

significantly affects its contribution to the volatility of aggregate credit supply. In Figure 6, we

see the wedge between NIRF and yi,t−1δ
′
i is particularly large for a handful of banks. This finding
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suggests that the payment network amplifies the shocks to a relatively small number of banks and

therefore generates heterogeneity in banks’ contribution to the volatility of aggregate credit supply

that is beyond the heterogeneity from banks’ difference in the size of their shocks δ′i.

Beyond the implications on aggregate credit supply, our finding in Figure 6 also sheds

light on how payment network externalities affect the cross-sectional distribution of credit-supply

volatility. The volatilities of individual banks’ lending are main sources of uncertainty in the fund-

ing environment of bank-dependent firms and households. When the payment network amplifies

volatilities for certain banks and dampen volatilities for others, the ultimate impact on the real

economy depends on whether borrowers are able to smooth out volatilities by switching between

different lenders. Frictions that limit borrowers’ mobility transmit credit-supply volatilities to

bank-financed investment of firms and households’ purchases of services, goods, and real estate.34

In Panel A of Figure 7, we take the ratio of a bank’s network impulse response function

(NIRF) to its average loan amount in our sample. We rank banks by their NIRF and plot the ratio

for each bank. Note that a bank’s NIRF is comparable in magnitude to its loan value. As shown in

the definition (46), NIRF is give by the product between a bank’s lending in the previous period and

its equilibrium growth loan growth rate given the realized shock equal to the standard deviation δ′i.

If bank size is an adequate proxy for a bank’s systemic importance, we would expect a relatively

flat line. In contrast, the figure shows strong heterogeneity. Scaled by the size of lending, banks

differ significantly in their contributions to the credit-supply volatility. In other words, larger banks

are not necessarily more important in the sense of generating systemic risk in the credit supply.

To further investigate on the impact of network topology on banks’ contributions to credit-

supply volatility, we take the ratio of a bank’s NIRF to the counterfactual NIRF implied by a

uniform network, where all banks are equally connected (i.e., w′
ij = 1/(N−1)). If the ratio is close

34Ongena and Smith (2001) empirically characterize firms with greater mobility in lending relationships.
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Figure 7: Network topology and bank NIRF. In Panel A, we take the ratio of a bank’s network impulse
response function (NIRF) and the bank’s average loan amount in our sample. The flat line is drawn from the average
NIRF divided by the cross-section average of banks’ average loan amount in our sample. In Panel B, we take the ratio
of a bank’s NIRF to the counterfactual NIRF implied by a uniform network, where all banks are equally connected
(i.e., w′

ij = 1/(N − 1)). The flat line is drawn from the average NIRF dividend by the average NIRF implied by the
uniform network. When calculating both NIRFs, we use the same estimates of parameters of the lending game. In
both panels, we rank banks by their NIRFs and plot the ratio for each bank.

to one, the topology of payment network does not affect the bank’s contribution to credit-supply

volatility relative to an equally connected network. If the ratio is greater (smaller) than one, the

payment network has an amplification (dampening) effect. In Panel B of Figure 7, we rank banks

by their NIRFs and plot the ratio for each bank. Except for less than fifty banks having a ratio

greater than one, the network actually has a buffering effect, relative to a uniform network, when

it comes to the propagation of individual banks’ shocks to the aggregate credit supply. However,

for banks with the ratio greater than one, the amplification effect is significant. As discussed in

Section 4.1, strategic complementarity under ϕ > 0 generates a shock amplification mechanism.

Our analysis in Figure 6 and 7 shows that the amplification works through a small subset of banks.

As shown in (48), the volatility of aggregate credit supply can be decomposed into individ-
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Figure 8: Variance Decomposition for Aggregate Credit Supply. In this figure, we rank banks by their network
impulse response functions (NIRFs) and, starting from the bank with the highest NIRF, we accumulate banks’ con-
tribution to the conditional volatility of aggregate credit supply (conditional on the lending distribution of previous
period, i.e., {yi,t−1}Ni=1, being equal to the sample-average lending distribution). The cumulative volatility is divided
by the total conditional volatility of the network-dependent component of aggregate credit supply given by (45).

ual banks’ NIRFs. In Figure 8, we rank banks by their NIRFs and, starting from the bank with the

highest NIRF, we accumulate banks’ contribution to the conditional volatility of aggregate credit

supply (conditional on the lending distribution of previous period, i.e., {yi,t−1}Ni=1, being equal to

the sample-average lending distribution). The cumulative volatility is divided by the total condi-

tional volatility of aggregate credit supply given by (45). The curve ends at 100% because after

fully accounting for all banks’ contributions (i.e., NIRFs), we arrive at the total volatility. A key

finding from Figure 8 is that a group of slightly more than fifty banks account for almost 100% of

credit-supply volatility. This is consistent with our previous finding that the network amplification

mechanism works through a small subset of banks. From a policy perspective, it is important to

monitor these systemically important banks as any shocks to these banks are amplified dispropor-

tionately by the payment network to strongly affect the aggregate supply of bank credit.
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Figure 9: Network-independent lending and credit supply loss due to bank removal. In this figure, we
plot the expected lending of a bank without network linkages (i.e., yi,t−1ᾱ

′
i) and the expected loss of aggregate credit

supply due to the removal of the bank.

4.3 Insolvency key bank

In (49), we calculate the expected loss of aggregate credit supply due to the removal of a bank

and define the insolvency key bank as the bank whose removal causes the largest expected loss

in the aggregate credit supply. Removing a bank not only eliminates its own contribution to the

aggregate credit supply, independent of the network (i.e., yi,t−1ᾱ
′
i), but also eliminates the bank’s

contribution due to its responses to other banks’ lending and the spillover effect of its lending on

other banks through the direct and indirect network linkages. Note that, as discussed in Section

3.1, we include the constant among the control variables to absorb the average loan growth rate,

so for a subset of banks, the average of its network-dependent component of loan growth rate and

the parameter ᾱ′
i can be negative. In Figure 9, we plot yi,t−1ᾱ

′
i and the expected loss of aggregate

credit supply due to the removal of bank i. When calculating both quantities, we set yi,t−1 to the

sample average. Without the network linkages, the two quantities should coincide. The wedges
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Figure 10: Network topology and insolvency key bank. In Panel A, we plot the ratio of the loss of aggregate
credit supply due to the removal of a bank to the bank’s average loan amount. In Panel B, we plot the ratio of the loss
of aggregate credit supply due to the removal of a bank from the average network to the credit loss due to the removal
of a bank from a counterfactual uniform network (where all banks are equally connected, i.e., w′

ij = 1/(N − 1)).

show the impact of the liquidity externality and hedging externality of the payment network.

Three forces generate the heterogeneity in the expected loss of aggregate credit supply due

to the removal of a bank. First, as shown in (49), the expected loss of credit supply is calculated by

applying our model-implied loan growth rates to yi,t−1, bank lending in the previous period which

we set to the sample average. Therefore, the cross section distribution of average lending amount

contributes to the heterogeneity. In Panel A of Figure 10, we neutralize this effect by plotting the

ratio of expected loss of credit supply due to the removal of a bank to the bank’s average loan

amount. The heterogeneity remains. The second force is that banks differ in ᾱ′
i (the expected loan

growth rate independent of the network effects). And third, banks differ in their positions in the

payment network. In Panel B of Figure 10, we highlight the third force (i.e., the network topology)

by plotting the ratio of credit supply loss implied by the data network to credit supply loss implied
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Figure 11: Network propagation: market equilibrium vs. the planner’s solution. This figure reports the
mean (Panel A) and volatility (Panel B) of aggregate credit supply conditional on the outstanding loan amounts of the
previous period (i.e., {yi,t−1}Ni=1). In both Panel A and B, the statistics are decomposed into each round of network
propagation. We show both the calculation based on the market equilibrium and from the planner’s solution.

by a counterfactual uniform network where all banks are equally connected (i.e., w′
ij = 1/(N−1)).

In the counterfactual calculation, heterogeneity is only generated by banks’ difference in yi,t−1

and ᾱ′
i. Therefore, in Panel B of Figure 10, we neutralize the first and second forces behind the

heterogeneity in the expected loss of credit supply due to a bank’s removal and highlight the role of

network topology. While the ratio stays around one for most banks, the network linkages strongly

amplify the influence of a relatively small group of banks on the aggregate credit supply (on the left

side) and significantly dampen the influence of another small group of banks (on the right side).
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4.4 Comparing the planner’s solution and market equilibrium

We apply the framework in Section 3.4 to compare the market equilibrium and the planner’s so-

lution. The planner maximizes the total profits of all banks, internalizing the liquidity externality

and hedging externality through the payment network. In Panel A of Figure 11, we decompose

the expected aggregate credit supply (conditional on previous loan amounts, i.e., {yi,t−1}Ni=1) into

rounds of network propagation. The first column in both cases is generated by the loan growth

rate independent from any network effects (i.e., ᾱ′
i for the market equilibrium and ϕ̃iα

′
i/ϕ in the

planner’s solution). The second column adds to the first column the impact of direct network link-

ages, and the third column adds to the second column the impact of first-degree indirect linkages.

The planner’s solution differs from the market equilibrium by internalizing the spillover effects of

banks’ lending decisions. Once the network effects are activated (i.e., starting from the second col-

umn), the planner’s solution features a higher expected level of credit supply. The wedge is stable

across rounds of network propagation, suggesting that the main difference between the planner’s

solution and market equilibrium is due to the direct network linkages.

In Panel B of Figure 11, we decompose the volatility of aggregate credit supply (conditional

on {yi,t−1}Ni=1) into rounds of network propagation. By internalizing the spillover effects of indi-

vidual banks’ lending decisions, the planner responds to the shocks to individual banks differently

from the market equilibrium, so the planner’s aggregate credit supply features a volatility that is

around 10% below that of the market equilibrium. Overall, the planner’s solution features a risk-

return trade-off that is superior to that implied by the market equilibrium. In other words, payment

network externalities induce a lower expected level of credit supply and higher volatility.

In Figure 12, we compare the planner’s solution and market equilibrium through the distri-

bution of lending volatility and expected level across banks. Many borrowers rely on relationship

lending. Therefore, the distribution of credit across banks affects the real economy. In Panel A of
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Figure 12: NIRF and expected network lending distribution: Market equilibrium vs. planner’s solu-
tion. In Panel A, we plot the histogram of banks’ NIRFs obtained from the market equilibrium and planner’s solution.
In Panel B, we plot banks’ expected lending in the network game from the market equilibrium and planner’s solution.

Figure 12, we plot the histogram of banks’ volatilities of banks’ lending given by the market equi-

librium condition (37). Using the planner’s solution (55), we also calculate the volatility of banks’

lending implied by the planner’s solution. The volatility distribution of the market equilibrium is

tilted to the right relative to the planner’s distribution, suggesting more volatile credit supply at

bank level. A borrower can switch from a bank with a higher lending volatility to a more stable

lender can benefit from having a more stable credit supply condition.

In Panel B of Figure 12, we calculate the expected levels of lending for individual banks

using the market equilibrium condition (37) and the planner’s solution (55) and plot the histogram

for both cases. Note that, as discussed in Section 3.1, the constant among control variables absorbs

the average lending, so the estimates of ᾱ′
i can potentially be negative. The distribution of expected

lending in the market equilibrium exhibits wider dispersion than that of the planner’s solution. This
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Figure 13: Rolling estimation: market equilibrium vs. the planner’s solution. In this figure, we report
the rolling estimation results with each rolling window containing twenty two quarters (i.e., half of the total forty
four quarters in our sample). We report the estimate of network multiplier in Panel A together with the confidence
band of two standard errors. In Panel B and C, we compare respectively the volatility and expectation of aggregate
credit supply implied by the loan growth rates in the market equilibrium and planner’s solution (conditional on previous
lending amounts, {yi,t−1}Ni=1 where yi,t−1 is set to the full-sample average). In Panel B, we also plot the sum of banks’
network-independent volatilities conditional on previous loan amounts (i.e., {yi,t−1δ

′
i}Ni=1). In Panel C, we also plot

the sum of banks’ network-independent expected lending conditional on previous loan amounts (i.e., {yi,t−1ᾱ
′
i}Ni=1).

finding suggests that payment network externalities generate a greater cross-sectional dispersion

of bank lending and thus makes any frictions limiting borrowers mobility more costly.

In Figure 13, we present the rolling estimation results. We conduct rolling estimation with

each rolling window containing twenty two quarters (i.e., half of the total forty four quarters in our

sample). In Panel A of Figure 13, we report the estimate of the network multiplier and the confi-

dence interval of two standard errors from the method of Bollerslev and Wooldridge (1992) that is

robust to non-normality of shocks in quasi-MLE. The estimate is plotted against the last quarter of

the rolling sample. The multiplier demonstrates significant variation over time. During the Covid-

19 pandemic, banks experience larger shocks and greater heterogeneity in shock exposure, so our
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estimate of ϕ contains more noise and has a wider standard-error band.

Next, we compare the volatility and expectation of aggregate credit supply implied by the

loan growth rates in the market equilibrium and planner’s solution (conditional on previous lending

amounts, {yi,t−1}Ni=1 where yi,t−1 is set to the full-sample average). The dynamics of wedge be-

tween the market equilibrium and the planner’s solution follow the dynamics of network multiplier.

When ϕ is higher, the network externalities are stronger, which then implies a greater difference

between the two equilibria.

In Panel B of Figure 13, we show that during the period of low ϕ (the rolling windows

ending between 2018 and 2019), the conditional volatility of planner’s credit supply is close to

the simple sum of banks’ volatilities independent of network effects (i.e., {yi,t−1δ
′
i}Ni=1). During

this period, payment network externalities amplify individual banks’ shocks so market equilibrium

generates a higher volatility of aggregate credit supply than the sum of banks’ network-independent

volatilities. The volatility wedge can be as high as $8 billions per quarter (i.e., annualized volatility

of 8× 4/6400 = 0.5% given the average aggregate bank credit of $6.4 trillions in our sample).

In Panel C of Figure 13, we plot the conditional expectation. Both the market equilibrium

and planner’s solution feature a higher level of credit supply than what is implied by the simple

sum of banks’ network-independent credit provision. Therefore, the payment network has a overall

positive effect on amplifying the aggregate credit supply through the circulation of liquidity among

banks. Across different time periods, the wedge between the market equilibrium and planner’s

solution is larger when the estimate of ϕ is larger in Panel A. Over time, both the conditional

volatility (in Panel B) and expectation (in Panel A) of planner’s credit supply exhibits much smaller

variations than those of the market equilibrium, suggesting that payment network externalities

generate significant uncertainty in the credit conditions for the real economy.
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5 Conclusion

We provide the first evidence on how payment-flow topology affects the supply of bank credit. The

payment network generates strategic complementarity in banks’ lending decisions and amplifies

shocks to individual banks. Our analysis reveals a subset of systemically important banks that

have a large influence on the level and fluctuation of aggregate credit supply due to their special

positions in the payment network. We quantify the network externalities and show that policy

interventions targeted at such externalities may improve the risk-return profile of credit supply.

Our framework offers a new theoretical underpinning of the concept of money multiplier.

The traditional concept is often explained in an artificial setting that is disconnected from the

operational and regulatory environment of modern banking (McLeay, Radia, and Thomas, 2014).

In our model, banks finance lending with deposits and hold reserves to cover payment outflows

under real-time gross settlement (RTGS), creating a natural link between the monetary base and

the creation of credit and deposits. Importantly, liquidity percolation through the payment network

generates interconnectedness in banks’ liquidity conditions. Therefore, the money multiplier in

equilibrium depends on the topology of payment flows.

Our paper offers policy guidance in the rapidly growing space of digital payment. Technology-

driven entrants rewire the payment flows, and central banks around the world actively research on

the implications of central bank digital currency (CBDC). The current discussion on payment sys-

tem reforms focuses on operational efficiency and technological vulnerabilities. Our paper broad-

ens the attention to implications on credit supply and provides an equilibrium-based empirical

framework to quantify the impact of payment-network changes on credit conditions.
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A Appendix: Background Information on Payment Systems

The Fedwire Funds Service is the primary payment system in U.S. for large-value domestic and
international USD payments. It is a real-time gross settlement system that enables participants to
initiate funds transfer that are immediate, final, and irrevocable once processed. The service is
operated by the Federal Reserve Banks. Financial institutions that hold an account with a Federal
Reserve Bank are eligible to participate in the service and electronically transfer funds between
each other. Such institutions include Federal Reserve member banks, nonmember depository in-
stitutions, and certain other institutions, such as U.S. branches and agencies of foreign banks.

Participants originate funds transfers by instructing a Federal Reserve Bank to debit funds
from its own account and credit funds to the account of another participant. To make transfers, the
following information is submitted to the Federal Reserve: the receiving bank’s routing number,
account number, name and dollar amount being transferred. Each transaction is processed individ-
ually and settled upon receipt. Wire transfers sent via Fedwire are completed the same business
day, with many being completed instantly. Participants may originate funds transfers online, by
initiating a secure electronic message, or offline, via telephone procedures.

Participants of Fedwire Funds Service can use it to send or receive payments for their own
accounts or on behalf of corporate or individual clients. In the paper, we focus on Fedwire fund
transfers made on behalf of banks’ corporate or individual clients, which make up about 80% of
total transactions in terms of transaction number.

The Fedwire Funds Service business day begins at 9:00 p.m. eastern standard time (EST)
on the preceding calendar day and ends at 7:00 p.m. EST, Monday through Friday, excluding
designated holidays. For example, the Fedwire Funds Service opens for Monday at 9:00 p.m.
on the preceding Sunday. The deadline for initiating transfers for the benefit of a third party
(such as a bank’s customer) is 6:00 p.m. EST each business day and 7:00 p.m. EST for banks
own transactions. Under certain circumstances, Fedwire Funds Service operating hours may be
extended by the Federal Reserve Banks.

To facilitate the smooth operation of the Fedwire Funds Service, the Federal Reserve Banks
offer intraday credit, in the form of daylight overdrafts, to financially healthy Fedwire participants
with regular access to the discount window. Many Fedwire Funds Service participants use daylight
credit to facilitate payments throughout the operating day. Nevertheless, the Federal Reserve Pol-
icy on Payment System Risk prescribes daylight credit limits, which can constrain some Fedwire
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Funds Service participants’ payment operations. Each participant is aware of these constraints and
is responsible for managing its account throughout the day.

The usage of Fedwire Funds Service grows over our sample period from 2010 to 2020, with
total number of transfers and transaction dollar value increasing by 47% and 38%, respectively.
In 2020, approximately 5,000 participants initiate funds transfers over the Fedwire Funds Service,
and the Fedwire Funds Service processed an average daily volume of 727,313 payments, with an
average daily value of approximately $3.3 trillion.35 The distribution of these payments is highly
skewed, with a median value of $24,500 and an average value of approximately $4.6 million. In
particular, only about 7 % of Fedwire fund transfers are for more than $1 million.

The other important interbank payment system in U.S. is the Clearing House Interbank Pay-
ments System (CHIPS), which is a private clearing house for large-value transactions between
banks. In 2020, CHIPS processed an average daily volume of 462,798 payments, with an average
daily value of approximately $1.7 trillion, about half of the daily value processed by Fedwire.36

There are three key differences between CHIPS and Fedwire Funds Service. First, CHIPS is pri-
vately owned by The Clearing House Payments Company LLC, while Fedwire is operated by the
Federal Reserve. Second, CHIPS has only 43 member participants as of 2020, compared with
thousands of banking institutions making and receiving funds via Fedwire. Third, CHIPS is not a
real-time gross settlement (RTGS) system like Fedwire, but a netting engine that uses bilateral and
multi-lateral netting to consolidates pending payments into single transactions. The netting mech-
anism significantly reduces the impact of payment flows on banks’ decision making (and therefore
our sample focuses on the RTGS, Fedwire) but exposes banks to potential counterparty risks.

35Data source: www.frbservices.org. Federal Reserve also operates two smaller payment systems, National Settle-
ment Service (NSS) with an average daily settlement value of $93 billions in 2020 (source: www.frbservices.org). and
FedACH with an average daily settlement value of $122.8 billion in 2020 (source: www.federalreserve.gov).

36Data source: https://www.theclearinghouse.org
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B Appendix: Bank Customer Liquidity Management

In this section, we microfound the component, θ1xi +
θ2
2
x2
i , of bank i’s objective function by

modelling the liquidity management problem of bank i’s customers.
In aggregate, bank i’s customers lose liquidity xi, which is equal to the payment outflow to

other banks’ customers. To cover the liquidity shortfall, bank i’s customers may borrow from bank
i, for example, in the form of lines of credit.37 Consider a unit mass of customers and the evenly
distributed loss of liquidity (i.e., each customer’s loss of liquidity is equal to xi). A representative
customer chooses c, the amount of liquidity obtained from bank i (for example, the size of lines of
credit). Bank i charges a proportional price Pc. The customer’s problem is given by

max
c

ξ1

[
c− xi −

1

2ξ2
(c− xi)

2

]
− cPc , (B.1)

where the parameter ξ1 (> 0) captures the overall demand for liquidity and the parameter ξ2 (> 0)
captures the decreasing return to liquidity. A key economic force is that a higher xi increases the
marginal benefit of c. In other words, when bank i’s customers lose liquidity through payment
outflows to other banks’ customers, they rely more on bank i for liquidity provision.

From the customer’s first order condition for c,

ξ1 −
ξ1
ξ2
(c− xi) = Pc , (B.2)

we solve the optimal c:

c = ξ2

(
1− Pc

ξ1

)
+ xi . (B.3)

The customer’s liquidity demand is stronger following a greater payment outflow, xi and when the
marginal value of liquidity declines slower (i.e., under a greater value of ξ2). A higher value of ξ1
or a lower price Pc also increase c. Under the homogeneity of bank i’s customers, equation (B.3)
is also the aggregate liquidity demand for the unit mass of bank i’s customers.

Bank i sets the price Pc to maximize its profits from liquidity provision:

max
Pc

[
ξ2

(
1− Pc

ξ1

)
+ xi

]
Pc . (B.4)

37Empirically, cash and lines of credit are substitutes (Lins, Servaes, and Tufano, 2010).
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Here we assume relationship banking so bank i’s customers cannot obtain liquidity elsewhere.
This translate into bank i’s market power and monopolistic profits. From the first-order condition
for Pc,

− ξ2
ξ1
Pc + ξ2

(
1− Pc

ξ1

)
+ xi = 0 , (B.5)

we solve the optimal Pc:

Pc =
ξ1
2

(
1 +

xi

ξ2

)
. (B.6)

Substituting the optimal Pc into bank i’s profits, we obtain the maximized profits:

ξ1ξ2
4

(
1 +

xi

ξ2

)2

=
ξ1ξ2
4

+
ξ1
2
xi +

ξ1
4ξ2

x2
i , (B.7)

which corresponds to the component, θ1xi +
θ2
2
x2
i , of bank i’s objective function in the main text

with
θ1 =

ξ1
2

, and, θ2 =
ξ1
2ξ2

. (B.8)

The constant ξ1ξ2
4

is omitted in bank i’s objective function in the main text.
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C Appendix: Derivation Details

C.1 Solving the equilibrium
Let ϕ denote the correlation (not negative of correlation). We have

E
[
(xi −mi)

2
]
= Var(xi) + E [xi −mi]

2 (C.1)

= Var

(∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj

)
+ E

[∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj −mi

]2

=
∑
j ̸=i

Var (gijyi − gjiyj) +

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj −mi

)2

=
∑
j ̸=i

(
y2i σ

2
ij + y2jσ

2
ji − 2yiyjσijσjiρij

)
+

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj −mi

)2

,

E
[
x2
i

]
= Var(xi) + E [xi]

2 = Var(xi) + E

[∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj

]2

=
∑
j ̸=i

Var (gijyi − gjiyj) +

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj

)2

=
∑
j ̸=i

(
y2i σ

2
ij + y2jσ

2
ji − 2yiyjσijσjiρij

)
+

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj

)2

, (C.2)

E
[
z2i
]
= Var(zi) + E [zi]

2 = Var(zi) + E

[∑
j ̸=i

gijyi

]2

=
∑
j ̸=i

Var (gijyi) +

(∑
j ̸=i

µijyi

)2

= y2i (σ
2
−i + µ2

−i) , (C.3)

where, to simplify the notations, we define

µ−i ≡
∑
j ̸=i

µij (C.4)
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and

σ2
−i =

∑
j ̸=i

σ2
ij = Var

(∑
j ̸=i

gij

)
= E

(∑
j ̸=i

gij

)2
−

(
E

[∑
j ̸=i

gij

])2

(C.5)

where the second equality is based on the fact that gij is independent across j (pairs).
To solve the first-order condition for yi, we use

∂E [xi −mi]

∂yi
=
∑
j ̸=i

µij = µ−i , (C.6)

∂E [xi]

∂yi
=
∑
j ̸=i

µij = µ−i , (C.7)

∂E [(xi −mi)
2]

∂yi
= 2

∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj −mi

)(∑
j ̸=i

µij

)

= 2
∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(
yiµ−i −

∑
j ̸=i

µjiyj −mi

)
µ−i (C.8)

∂E [x2
i ]

∂yi
= 2

∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj

)(∑
j ̸=i

µij

)

= 2
∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(
yiµ−i −

∑
j ̸=i

µjiyj

)
µ−i (C.9)

∂E [z2i ]

∂yi
= 2yi(σ

2
−i + µ2

−i) (C.10)

The first-order condition for yi:

0 =εi +R− 1− τ1µ−i + θ1µ−i − yiκ(σ
2
−i + µ2

−i)

− τ2

[∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+

(
yiµ−i −

∑
j ̸=i

µjiyj −mi

)
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]

+ θ2
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(
yiσ

2
ij − ρijσijσjiyj

)
+

(
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∑
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µjiyj

)
µ−i

]
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which can be further simplified to

0 =εi +R− 1− (τ1 − θ1)µ−i + τ2µ−im− yi (κ+ τ2 − θ2)
(
σ2
−i + µ2

−i

)
+ (τ2 − θ2)

∑
j ̸=i

(
ρijσijσji + µ−iµji

)
yj (C.11)

From this condition, we solve the optimal yi.

C.2 Solving the planner’s solution
To solve the planner’s solution, we calculate the following derivatives:

∂E [(xj −mj)
2]

∂yi
=

∂

∑k ̸=j
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2
jk + y2kσ

2
kj − 2yjykσjkσkjρjk

)
+

(∑
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∑
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∑
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µij (C.13)

∂E
[
z2j
]

∂yi
= 0 (C.14)
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The first-order condition for yi:

0 =εi +R− 1− τ1µ−i + θ1µ−i − yiκ(σ
2
−i + µ2

−i) (C.15)

− τ2
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+ (τ2 − θ2)
∑
j ̸=i

(
2ρijσijσji + µ−iµji + µ−jµij

)
yj − (τ2 − θ2)

∑
j ̸=i

µij

(∑
k ̸=j

µkjyk

)
−
∑
j ̸=i

τ2mjµij

From this condition, we solve the planner’s choice of optimal yi.
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D Appendix: Additional Tables and Figures

Variable N Mean S.D. P25 P50 P75

Quarterly loan growth rate 22000 0.0230 0.0550 -0.0016 0.0143 0.0341

Bank Characteristics:
log(Asset) (unit: log(USD ’000)) 22000 15.13 1.41 14.15 14.69 15.72
Liquid Assets/Total Assets 22000 0.18 0.12 0.10 0.16 0.24
Capital/Total Assets 22000 0.11 0.03 0.09 0.10 0.12
Deposits/Total Assets 22000 0.68 0.12 0.63 0.70 0.75
Return on asset 22000 0.0026 0.0025 0.0018 0.0025 0.0033
Loans/Total Assets 22000 0.67 0.15 0.60 0.70 0.77

Macroeconomic Variables:
Effective Fed Funds Rate change (%) 22000 -0.0007 0.2361 -0.0101 0.0119 0.0521
GDP growth (%) 22000 0.51 3.09 -2.59 1.43 2.29
Inflation (%) 22000 0.43 0.66 0.11 0.46 0.82
Stock market return (%) 22000 3.68 8.06 0.51 4.52 7.97
Housing price growth (%) 22000 1.13 1.87 0.14 1.15 2.29

Cross-Section Payment Statistics:
Average net daily payment flow/Deposits (%) 500 0.01 0.91 -0.14 0.01 0.17
s.d. of net daily payment flow/Deposits (%) 500 0.97 0.83 0.48 0.74 1.14
Average gross daily outflow/Deposits (%) 500 1.82 4.31 0.35 0.74 1.47
s.d. of gross daily outflow/Deposits (%) 500 1.11 1.34 0.41 0.70 1.18

Table D.1: Summary Statistics. The table reports the number of observations, mean, standard deviation, and
percentiles of variables in our sample. Our sample contains 500 banks and 44 quarters from 2010 to 2020. We
calculate µij (σij) as the within-quarter average (standard deviation) of daily payment outflows from bank i to bank j
divided by bank i’s deposits at the beginning of the quarter. Therefore,

∑
j ̸=i µij is the average daily payment outflow

as a fraction of deposits for bank i within a quarter and
∑

j ̸=i σ
2
ij measures the payment-flow risk for bank i.
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Number of Banks: 500 500
( Not winsorized )

300 400 600 700

Constant 0.0897
(0.90)

0.0863
(0.86)

0.1449
(1.33)

0.0973
(0.96)

0.0765
(0.76)

0.0609
(0.60)

Bank Characteristics:
log(Asset) −0.0039

(−0.80)
−0.0038
(−0.76)

−0.0067
(−1.37)

−0.0046
(−0.92)

−0.0042
(−0.81)

−0.0032
(−0.62)

Liquid Assets/Assets 0.0144∗
(1.77)

0.0142∗
(1.74)

−0.0011
(−0.12)

0.0098
(1.03)

0.0200∗∗∗
(2.58)

0.0252∗∗∗
(3.52)

Capital/Assets 0.0931∗∗∗
(3.28)

0.0941∗∗∗
(3.28)

0.1086∗∗∗
(4.63)

0.0971∗∗∗
(3.58)

0.0607
(1.51)

0.0531
(1.32)

Deposits/Assets −0.0108∗∗
(−2.27)

−0.0104∗∗
(−2.22)

−0.0080
(−1.47)

−0.0079
(−1.51)

−0.0111∗∗∗
(−2.65)

−0.0097∗∗
(−2.34)

Return on asset 1.2726∗∗∗
(4.19)

1.2789∗∗∗
(4.17)

1.3469∗∗∗
(3.54)

1.3646∗∗∗
(4.00)

1.2911∗∗∗
(4.55)

1.3236∗∗∗
(4.67)

Loans/Assets −0.0296∗∗∗
(−2.96)

−0.0294∗∗∗
(−2.90)

−0.0380∗∗∗
(−4.14)

−0.0331∗∗∗
(−3.47)

−0.0241∗∗
(−2.32)

−0.0172
(−1.64)

Macro. Variables:
EFFR change (%) −0.0111

(−1.30)
−0.0111
(−1.31)

−0.0102
(−1.41)

−0.0108
(−1.27)

−0.0125
(−1.37)

−0.0123
(−1.31)

GDP growth (%) −0.0007
(−1.00)

−0.0007
(−0.98)

−0.0005
(−0.85)

−0.0007
(−0.97)

−0.0009
(−1.16)

−0.0009
(−1.15)

Inflation (%) 0.0032
(1.11)

0.0032
(1.13)

0.0032
(1.13)

0.0029
(1.03)

0.0036
(1.23)

0.0036
(1.23)

Stock return (%) −0.0009∗∗
(−2.28)

−0.0009∗∗
(−2.30)

−0.0008∗∗
(−2.50)

−0.0009∗∗
(−2.26)

−0.0009∗∗
(−2.22)

−0.0009∗∗
(−2.17)

Housing price growth (%) 0.0022∗∗
(2.52)

0.0022∗∗
(2.50)

0.0018∗∗
(2.19)

0.0020∗∗
(2.25)

0.0024∗∗
(2.56)

0.0025∗∗∗
(2.64)

(* p<0.10 ** p<0.05 *** p<0.01)

Table D.2: Control Variable Coefficients. The table reports the estimates of control variable coefficients across
samples of different sizes that contain banks ranked by the size of their deposits. The t-stats are in the parentheses.
The abbreviation, EFFR, is for effective fund funds rate.
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Figure D.1: Control variable coefficients across samples. This figure reports the ratio of an estimate from
an alternative sample to the estimate from our main sample of the top 500 banks by deposit size. A ratio around one
shows the two estimates are close. We plot the 95% confidence interval of each estimate from our main sample scaled
by the estimate so the mid-point is equal to one.
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Figure D.2: Eigenvalues of network adjacency matrix. In this figure, we plot the absolute values of five
largest eigenvalues of W′. W′ for quarter t is calculated from payment data from quarter t− 1 (see Section 2.1).
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