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1 Introduction

Classic financial theory views corporate debt and equity as contingent claims on the firm’s

underlying asset value (Merton (1974)). As a consequence, credit spreads and equity returns

should be tightly connected. Early tests of first-generation structural models find that these

models tend to underpredict the level of credit spreads, especially for investment-grade bonds

(Jones, Mason, and Rosenfeld (1984), Huang and Huang (2012)).

Instead, more complex second-generation structural models, which allow for time-varying

risk premia and/or richer asset dynamics, are more successful at explaining the level of credit

spreads (Cremers, Driessen, and Maenhout (2008), Chen, Collin-Dufresne, and Goldstein

(2009), Du, Elkamhi, and Ericsson (2019)). In particular, Cremers et al. (2008) demonstrate

a close connection between credit spreads and prices of equity index options. More recently,

Culp, Nozawa, and Veronesi (2018) propose to use equity options and contingent-claim pric-

ing to construct “pseudo firms” whose derived credit spreads they find to be consistent with

actual credit spreads, suggesting “a good deal of integration between corporate bond and

options markets.”1

In this paper we revisit the question of how integrated credit and equity markets are

by investigating whether, in addition to credit spreads, structural models can also match

prices of credit options. Such options contain unique information about the higher-order

moments of credit spreads, thus adding a new dimension to the issue of market integration.

Specifically, we use a novel data set of options on a broad credit index to infer implied credit

volatilities across a range of moneyness and maturities. We characterize the dynamics of the

resulting credit-implied volatility surface and its relation to the volatility surface obtained

from equity index options, and we explore whether the two surfaces and their time variation

are consistent when examined through the lens of a rich structural model.2

1See Culp et al. (2018, p. 458).
2Under the null hypothesis of a Merton-style contingent-claim pricing model, both stock and bond prices
and the associated equity and credit derivatives should be driven by the same risk factors that drive the
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Credit indexes constitute the most liquid component of the corporate credit derivative

market.3 We focus on the credit index for North American investment-grade firms—the

CDX North American Investment Grade Index, henceforth denoted CDX. The years after

the financial crisis saw the development of an active credit index options market, and our

first contribution is to characterize trading activity in CDX options since trade reporting

became mandatory at the end of 2012. Trades are generally large with about two-thirds

of the trades having a notional that is at or above the level where the reported notional

is capped (typically either USD 100 million or USD 110 million).4 We estimate that the

average daily trading volume during our sample period was USD 4.35 billion, but trading

volume exhibits an upward trend and peaks at the height of the Covid-19 crisis in March

2020, where we estimate that it reached an average of USD 11.08 billion per day. In the

vast majority of option trades, the underlying is the five-year on-the-run (i.e., most recently

issued) CDX contract, and these options are the focus of the paper. Furthermore, we show

that trading activity is concentrated in relatively short-term (up to three to four months)

options, and that there is relatively more trading in high-strike options.

Next, we use composite dealer quotes to characterize the pricing of CDX options and the

relation to S&P 500 (SPX) options.5 CDX implied volatility smiles are consistently positively

skewed, which is economically consistent with the well-known negative skew of SPX implied

volatility smiles, once one accounts for the fact that CDX options are quoted in terms of

implied credit-spread volatilities. Since high credit spreads typically coincide with low equity

underlying firm asset values. This is the, admittedly strongly restrictive, sense in which we use “integration”
in this paper. A broader definition of integration might only require that all prices are compatible with a
common pricing kernel (see, e.g., Chen and Knez (1995) and Sandulescu (2020)). Indeed, more sophisticated
structural models, such as the one with stochastic bankruptcy costs that we develop below in Section 6.4,
allow for credit-specific risk factors.

3See Collin-Dufresne, Junge, and Trolle (2020) for a detailed description of this market.
4Trading between clients and dealers almost exclusively takes place over the counter, while interdealer trading
often takes place on dedicated trading platforms. For the subset of trades that are executed on the main
interdealer trading platform we have additional data from which we can infer that the capped trades on that
platform have an average trade size of USD 353 million.

5We follow standard market practice and express CDX option prices in terms of log-normal credit-spread
implied volatilities using a reduced-form model.
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values, the positive (negative) skew of credit (equity) implied volatilities are consistent with

a higher premium for options that pay off in bad economic states, where equity values are

low and credit spreads are high.

We also show that, much like CDX and SPX returns are highly (negatively) correlated,

the smile dynamics are also correlated. In particular, at-the-money (ATM) CDX and SPX

implied volatilities are highly positively correlated, while the skewness of the CDX and SPX

volatility smiles are negatively correlated.

Since the model-independent analysis shows a strong connection between CDX and SPX

options, we next investigate if they can be linked through a structural credit risk model.

We consider a model in which the asset value of a representative index constituent follows

a jump-diffusion process with idiosyncratic and systematic risks. The firm has both short-

term and long-term debt which generates a term structure of credit spreads. We derive

analytical expressions for credit and equity indexes as well as index options which facilitates

our calibration exercise.6

On a weekly basis, we calibrate the model to the CDX term structure, the SPX level,

and the SPX volatility surface (as well as short- and long-term index leverage ratios and the

index dividend yield), and then infer the CDX volatility surface out of sample. Consistent

with the data, the resulting CDX implied volatility smiles are positively skewed; indeed, the

magnitude of the skewness generated by the model is similar to that observed in the data.

Furthermore, the model captures many aspects of the joint dynamics of CDX and SPX

options in the sense that parameter configurations that increase the ATM SPX volatility

tend to increase the ATM CDX volatility, and those that make the SPX volatility smile more

negatively skewed tend to make the CDX volatility smile more positively skewed. However,

the level of CDX implied volatilities generated by the model is systematically lower than that

6We verify that the model is sufficiently flexible to match CDX and SPX implied volatility smiles individually
(via the systematic jump component) as well as the CDX term structure (via the idiosyncratic jump com-
ponent). An interesting observation is that the pure-diffusion version of the model generates a CDX implied
volatility smile that is not only much too flat but also counterfactually negatively skewed.
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observed in the data—a result that is robust across a range of model specifications. This

suggests that credit and equity markets are not fully integrated.

We discuss several possible explanations for this valuation puzzle. First, the model makes

some simplifying assumptions that could be relaxed. For example, instead of assuming that

index constituents are ex-ante identical, we extend the model to accommodate heterogeneity

in leverage across firms, but find that this only exacerbates the valuation puzzle.

Second, while our analysis does not require the two indexes to be identical in terms of

constituents, it requires a high degree of similarity in terms of index risk characteristics.

We compare the two indexes in terms of the distributions of rating, leverage, and total and

systematic asset return volatility across constituents—four characteristics that are central

to our structural model. We find the distributions to be very similar in terms of mean and

median values, even though the SPX distributions display more dispersion. In particular,

because index option prices are increasing in systematic asset volatility, one potential res-

olution of the valuation puzzle could be a higher average systematic asset volatility among

CDX constituents, but in fact we find it to be marginally lower.

Third, the two option contracts could span distinct economic states. As a result, state

prices implied from equity index options may not give sufficiently reliable information about

the prices of credit index options.7 However, we show that in the model, credit and equity

index options actually span very similar economic states, which makes them very good

substitutes in terms of their payoffs. Of course, this makes our findings even more surprising;

if SPX puts and CDX calls are substitutable, why do their prices not line up and why would

there be demand for both products?

There may be at least two reasons for this. First, there might be credit-specific factors

7As an example, Collin-Dufresne, Goldstein, and Yang (2012) find that equity index options do not span the
same states as super-senior CDX tranches, since the latter pay off in economic states that correspond to strikes
that are much further out of the money than what is commonly quoted on the equity side. Thus, pricing
super-senior tranches based on state prices extracted from equity index options amounts to extrapolation far
out in the tails, which is very model dependent.
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that affect credit derivatives but not equity derivatives so that CDX and SPX options are

complements rather than substitutes. A natural candidate is a factor driving systematic

bankruptcy costs, and we extend the model to incorporate this feature. In a parsimonious

calibration, we show that the valuation puzzle for ATM CDX options can be mostly elimi-

nated, but that it requires a very high variance of systematic bankruptcy costs.

Second, even if CDX and SPX options are close substitutes, they are not treated as such

by regulators in the context of credit-risk hedging by financial institutions. Indeed, anecdotal

evidence suggests that there is a structural demand for CDX call options by banks, who use

these options to hedge credit exposures to reduce their regulatory capital. Using regulatory

filings, we quantify one source of this demand by banks and show that it can potentially

account for a significant fraction of total trading volume in CDX options.

Finally, we show that a strategy of selling CDX volatility yields significantly higher av-

erage excess returns and Sharpe ratios than selling SPX volatility.8 A short-long strategy

of selling CDX volatility vs. buying SPX volatility also generates a high Sharpe ratio, al-

though lower than what is attained by selling CDX volatility outright. On the other hand,

its higher-order moments are more attractive, with the return distribution being roughly

symmetric (instead of highly negatively skewed) and much less leptokurtic.

The paper is related to several strands of literature. The model framework is most closely

related to Bai, Goldstein, and Yang (2019b) who focus on pricing equity index options.

Relative to their paper, we also treat credit index options, allow option expiries to differ

from debt maturity (thereby treating options as true compound options on the firm asset

value), and derive full analytical solutions to option prices.9

In contrast to the aforementioned papers on the level of credit spreads, a number of

8For instance, a strategy of selling an equally weighted portfolio of option straddles (appropriately sized)
yields a Sharpe ratio of 1.744 in the CDX market compared to a Sharpe ratio of 0.659 in the SPX market.

9Allowing option expiries to differ from debt maturity is important in our setting where option expiries are
typically less than four months while the underlying credit index has a maturity of approximately five years.
Bai et al. (2019b) derive option prices up to an expectation that is computed via numerical integration.
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papers provide evidence that points towards imperfectly integrated equity and corporate

credit markets. Collin-Dufresne, Goldstein, and Martin (2001) find that a large fraction of

changes in credit spreads cannot be explained by variables suggested by the Merton model;

further, the unexplained residuals seem to be driven by few common factors which subsequent

papers have linked to illiquidity factors (Friewald and Nagler (2019)) or intermediary balance-

sheet factors (He, Khorrami, and Song (2020)). A number of recent papers (Chordia, Goyal,

Nozawa, Subrahmanyam, and Tong (2017), Choi and Kim (2018), and Bai, Bali, and Wen

(2019a)) document differences in the set of factors and characteristics that explain the cross-

sections of corporate bond and stock returns. Schaefer and Strebulaev (2008) find that the

Merton model produces reasonable sensitivities of bond returns to stock returns, although a

sizable excess bond return volatility remains, which Bao and Pan (2013) link to time-varying

bond illiquidity. Kapadia and Pu (2012) find short-lived divergences between CDS and stock

prices, especially for firms with high arbitrage costs. A common feature of all these papers is

that they study bond returns or credit spread changes of individual firms, for which illiquidity

effects are likely to be important. In contrast, we focus on a highly liquid credit index and

its options.

Finally, the paper is related to a recent literature on the relative pricing of CDX tranche

swaps and SPX options (Coval, Jurek, and Stafford (2009), Collin-Dufresne et al. (2012),

and Seo and Wachter (2018)). In principle, this literature also provides insights into the

integration of equity and credit derivatives markets. However, in practice the relative pricing

of these instruments is complicated by several factors: CDX tranche swaps are long-dated

contracts, while the most liquid SPX options have short expiries;10 the range of (negative)

economic states that are spanned by CDX tranche swaps is much wider than that spanned

by SPX options (Collin-Dufresne et al. (2012)); and trading in CDX tranche swaps has

languished after the financial crisis. In contrast, CDX and SPX options are much more

10The literature, therefore, uses less liquid long-term SPX options that are traded over the counter.
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closely aligned in terms of which option maturities are liquid and the range of (negative)

economic states that are spanned. Moreover, CDX options have flourished after the financial

crisis.11

The paper is structured as follows: Section 2 describes the CDX options market and the

transaction and quote data. Section 3 characterizes the relation between CDX and SPX op-

tions. Section 4 presents a structural model for pricing index options, Section 5 describes the

calibration results, and Section 6 discusses possible explanations for our findings. Section 7

concludes. Closed-form valuation formulas and proofs are given in the Appendix, and an

Internet Appendix contains supplementary results.

2 CDX and CDX options

2.1 CDX

A CDX is a credit default swap that provides default protection on a set of companies belong-

ing to an index, with the notional of the swap divided evenly among the index constituents.

We focus on the investment-grade CDX that provides default protection on 125 investment-

grade companies. CDX contracts are issued with initial maturities between one and ten

years. A new set of CDX contracts referencing a “refreshed” index is issued every March

and September.12 The most recently launched contracts are called on-the-run; all previously

launched contracts are referred to as off-the-run. Most trading activity is in the five-year on-

the-run contract. Virtually all such trades are centrally cleared and executed on dedicated

trading platforms (so-called swap execution facilities or SEFs) at very low transaction costs;

11Based on all (capped) trade reports since 2013 and aggregating across all North American credit indexes,
we find that trading volume in tranche swaps is only 9% of the trading volume in options.

12These roll dates are March 20 and September 20 (in the second half of 2014, the roll date was postponed to
October 6, due to delays in signing up market participants to the 2014 ISDA Credit Derivatives Definitions).
The index constituents are selected among the investment-grade companies that have the most liquid single-
name CDSs traded on them. Each index is identified by its series number.
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see Collin-Dufresne et al. (2020) for details about the market structure and transaction costs

of CDX.

Each swap has a fixed coupon of C = 100 bps and, when entering into the swap, the

counterparties exchange an upfront amount equal to the present value of the swap.13 When

an index constituent defaults, the loss is settled in the same way as a single-name CDS,

and the outstanding notional of the swap is reduced. From then on, the swap references a

new version of the index without the defaulted name. For quotation purposes, the upfront

amount of the swap is converted to a spread, which is the value of the fixed coupon such

that the upfront amount is zero. This conversion is explained in Section IA.1 of the Internet

Appendix.

2.2 CDX options

A CDX option is an option to enter into a CDX contract at a given strike price. A payer

option gives the right to buy credit protection (paying the strike and the subsequent coupons)

while a receiver option gives the right to sell credit protection (receiving the strike and the

subsequent coupons). Options are European style and are quoted for a wide set of strikes and

monthly expirations. Options expire on the third Wednesday of each month. Contractually,

the option payoff is given in upfront terms. However, for quotation purposes it is standard

practice to write the payoff in spread terms and express the option price as a log-normal

spread implied volatility. Details—including how defaults during the life of the option are

handled—are provided in Section IA.1 of the Internet Appendix. Note that a payer (receiver)

option is a call (put) option on the upfront amount/spread.

13Throughout the paper, we assume that coupons are paid continuously at a rate C, which greatly simplifies
notation. In reality, coupons are paid quarterly on standardized coupon dates.
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2.3 Trading of CDX options

To understand the trading activity in CDX options, we analyze all transactions from Decem-

ber 31, 2012 (when reporting of trades in CDX options became mandatory) to the end of our

sample period on April 30, 2020.14 Table 1 displays descriptive statistics of the transaction

data. For completeness, the table also reports statistics on CDX transactions.15 In contrast

to CDX, trading in CDX options predominantly takes place over the counter, and the SEF

trades that we do observe are almost exclusively interdealer trades. Central clearing is also

less prevalent in CDX options than in CDX.16

CDX option trades are relatively infrequent (18 trades per day, on average) but large

in size. The median of the reported trade sizes is USD 100 million. However, about two-

thirds of the trades are reported with a capped notional which implies that trade sizes are

typically much larger.17 For the subset of trades that take place on the main interdealer

trading platform (GFI SEF), we have additional data from which we can infer that the

capped trades in that subset have an average trade size of USD 353 million.18 The average

daily trading volume based on the capped trade reports is USD 1.44 billion. Assuming that

capped trades in general have the same average trade size as those on the GFI SEF, we

obtain an estimate of the true average daily trading volume of USD 4.35 billion.19

14Trades are reported to swap data repositories, either the Bloomberg Swap Data Repository, the Depository
Trust & Clearing Corporation Data Repository, or the Intercontinental Exchange Trade Vault. Note that the
reporting requirement only concerns trades for which at least one counterparty is a US institution. Therefore,
the true trading activity is larger than what we report here.

15Collin-Dufresne et al. (2020) provide a detailed analysis of CDX transactions during a two-year period
starting on October 2, 2013.

16For CDX, five-year on-the-run (and immediate off-the-run) trades are, with a few exceptions, required to be
executed on SEFs and be centrally cleared. For CDX options, there are no such requirements.

17The level of the cap is determined by the Commodity Futures Trading Commission and varies over time
and with option strike. In most trade reports, the notional is capped at either USD 100 million or USD 110
million.

18Daily market activity reports from the GFI SEF show that the aggregate uncapped notional amount traded is
USD 108,410 million for CDX options during the period from October 2, 2013 to April 30, 2020. Identifying
GFI SEF trades in the transaction data shows that the aggregate capped notional amount is USD 34,829
million, with 300 capped trades that have an average capped trade size of USD 108 million. This implies
that the true average trade size of the capped trades is USD 353.27 (=108 + (108,410 - 34,829)/300) million.

19Compared with CDX option trades, CDX trades are more frequent (202 trades per day, on average) but
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Figure 1 shows the evolution in trading activity on a monthly basis. Panels A and B show

the average daily trading volume for CDX and CDX options, respectively, while Panels C

and D show the average number of trades per day. Underscoring the growing popularity of

CDX options, the trading volume exhibits an upward trend during the sample period. The

average daily trading volume based on the capped trade reports (estimated true volume)

has increased from USD 0.88 billion (USD 2.72 billion) in January 2013 to USD 2.08 billion

(USD 6.23 billion) in April 2020. Trading volume peaks at the height of the Covid-19 crisis

in March 2020 at USD 3.59 billion (USD 11.08 billion) per day. The highest trade count for

CDX options is in February 2020 at 88 trades per day, on average.

Table 1 also shows that in the vast majority of option trades, the underlying CDX is the

five-year on-the-run contract. Therefore, we focus on those options in the remainder of the

paper.

Table 2 shows the distribution of trading volume across moneyness and option maturity.

We define moneyness as

m =
log
(

K
F (τ)

)

σATM
√
τ
, (1)

where K is the strike, F (τ) is the forward spread, σATM is the ATM log-normal spread

implied volatility, and τ is the maturity. Intuitively, m measures the number of standard

deviations that an option is in or out of the money.20 The table shows that there is more

trading in high-strike than low-strike options. It also shows that trading is concentrated in

relatively short-term options with maturities out to three to four months.

smaller in size with a median trade size of USD 50 million and less than a quarter of the trade sizes being
above the cap. The average daily trading volume based on the capped trade reports is USD 11.13 billion
but we estimate that the true volume is USD 17.80 billion using the same method as for CDX options.

20More precisely, m measures the number of standard deviations that the log strike is away from the log
forward in the Black model (see Black (1976)). Alternatively, we could express moneyness in terms of the
Black-model delta, ∆, of the option. Since for a call option ∆ = N(−m + 1

2σ
2τ), we have that for a two-

month call option with a typical volatility of σ = 0.5, m-values of -2, -1, 0, 1, and 2 correspond to ∆-values
of 0.978, 0.846, 0.508, 0.164, and 0.024, respectively.
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2.4 CDX option quotes

To have synchronized data across the option surface, we use quotes rather than trades.

Quotes are obtained from Markit and are composites of “dealer runs” sent from dealers to

clients. We use end-of-day quotes. The sample period is from February 24, 2012 until April

30, 2020.

Details on the quote data is given in Sections IA.2 and IA.3 of the Internet Appendix.

There, we find that when option maturities become very short (typically less than one week),

dealers stop quoting prices. Beyond that, there are almost always quotes for at least three

monthly expirations. At longer maturities, quotes are more sporadic. In light of these

findings as well as the evidence on option transactions (Table 2), on each observation date

we select the first three monthly expirations among the options that have more than two

weeks to expiration. These options are denoted M1, M2, and M3. The average option

maturities are 29.9, 60.2, and 90.6 calendar days, respectively.

For each maturity, we consider 13 moneyness “buckets”: −3.25 < m ≤ −2.75, −2.75 <

m ≤ −2.25, ... , 2.75 < m ≤ 3.25, where m is defined in (1). Within each bucket, we search

for the option that is closest to the mid of the interval. We only search among OTM options

due to their higher liquidity. In the ATM category, we give priority to payer options.

The result of this data-sorting is a uniform maturity-moneyness grid that preserves the

information in the data without overweighing those dates on which more maturities and/or

strikes are quoted. In the Internet Appendix we show that quotations are tilted towards

higher-strike options. This probably reflects both the higher interest in trading those options

(Table 2) and the fact that the risk-neutral spread distribution is heavily skewed towards

higher spreads (see below) so that deep OTM payer options (by our moneyness measure)

have meaningful prices even when deep OTM receiver options have little value.

11



2.5 SPX option quotes

SPX options trade on the Chicago Board Options Exchange (CBOE) and from there we

get end-of-day quotes.21 Regular SPX options expire on the third Friday of each month.22

On each observation date, we search for the three SPX option maturities that are closest to

the three CDX option maturities. These SPX options either expire two days after or five

days before; hence, there is a close match in maturity between SPX and CDX options. The

average SPX option maturities are 30.6, 61.2, and 91.5 calendar days, respectively. For each

maturity, we then follow the same procedure as for CDX options to select 13 SPX options

according to moneyness (where moneyness is again defined in (1), but with F (τ) denoting

the forward SPX value).

3 Stylized facts

To provide an initial sense of the data, Figure 2 shows weekly CDX and SPX implied volatility

smiles for the M2 maturity. It is immediately apparent that implied volatility smiles for

CDX options are positively skewed, in stark contrast to the negatively skewed SPX implied

volatility smiles. This is economically intuitive in that bad economic states are characterized

by low equity prices and high credit spreads; therefore, if such states carry a high risk and/or

price of risk, prices of OTM SPX put options and OTM CDX call options will be elevated.

To summarize the information in implied volatilities across moneyness, option maturity,

and time, we follow the approach in Foresi and Wu (2005). On each date and for each option

maturity, we run the following cross-sectional regression

σIV (m) = β0 + β1m+ β2m
2 + ǫ, (2)

21Specifically, we use prices at 3:45 p.m. Eastern Time.
22There are also weekly and end-of-month expirations that we do not consider.
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where m is the measure of moneyness given in (1), and ǫ is an error term. In this regression,

β0 captures the ATM implied volatility, β1 captures the skewness of the implied volatility

smile, and β2 captures the curvature of the implied volatility smile. The β-coefficients are

very highly correlated across option maturity; therefore, for ease of exposition, we average

the β-coefficients across option maturity to produce single time series of β0, β1, and β2.
23

Note that β2 is sensitive to the moneyness range which varies over time, especially for CDX

options (see Figure IA3 in the Internet Appendix). This variation introduces noise in the

estimate of curvature. For this reason, we mainly focus on the dynamics of volatility and

skewness.

Figure 3 provides an overview of the data with the left (right) panels showing data for the

CDX (SPX) market. The top-left panel shows time series of the 1Y and 5Y CDX spreads.

Normally, the CDX term structure is strongly upward sloping; however, during the Covid-19

crisis the slope flattens as the 1Y spread increases more than the 5Y. At the peak of the

crisis, the 5Y spread reaches 151 bps.

The middle-left panel (blue line) shows the time series of CDX volatility. Clearly, CDX

volatility exhibits significant variation; in particular, it spikes during the Covid-19 crisis

in March 2020 when it reaches a maximum of 1.36 relative to the sample average of 0.47.

Moreover, variation in CDX and SPX volatility (middle-right panel) appear to be highly

correlated.

The lower-left panel (blue line) shows the time series of CDX skewness. This confirms the

observation in Figure 2 that the CDX implied volatility smiles are always positively skewed.

CDX skewness varies over time and reaches a maximum of 0.187 during the Covid-19 crisis

relative to a sample average of 0.074. It appears that variation in CDX and SPX skewness

(lower-right panel) is moderately negatively correlated so that, when the SPX volatility smile

23For β0, the correlations between the individual coefficients and the averaged coefficient in case of SPX (CDX)
are between 0.995 (0.991) and 0.999 (0.998). For β1, the correlations are between 0.959 (0.898) and 0.984
(0.948). And for β2, the correlations are between 0.771 (0.789) and 0.899 (0.824).
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becomes more skewed towards OTM put options, the CDX volatility smile tends to become

more skewed towards OTM call options. One exception is during the Covid-19 crisis; initially,

both CDX and SPX skewness becomes more pronounced, but CDX skewness reverses already

on March 9 while SPX skewness reverses on March 18.24

Next, we investigate more formally the joint dynamics of the underlying index (SPX or

CDX spread), volatility, and skewness—both within each market (in Table 3) and across

markets (in Table 4). To make sure that our findings are not driven by the Covid-19 cri-

sis, we report results both for the full sample and for an ex-Covid-19 sample that ends on

December 31, 2019. Table 3 reports correlations (in weekly changes) between the log CDX

spread, CDX volatility, and CDX skewness and between the log SPX, SPX volatility, and

SPX skewness. For CDX, there is a highly positive correlation between changes in spread

and volatility (0.675), a somewhat weaker positive correlation between changes in spread

and skewness (0.255), and a moderately positive correlation between changes in volatility

and skewness (0.397). For SPX, the table confirms the well-known negative return-volatility

relation, positive return-skewness relation, and negative volatility-skewness relation. In gen-

eral, the correlations (in absolute value) tend to be stronger within the SPX market than the

CDX market. The correlation patterns are robust to excluding the Covid-19 crisis; indeed,

the correlation between CDX volatility and skewness is stronger in the ex-Covid-19 sample

(0.525).

Table 4 shows cross-market correlations (in weekly changes) between index levels, between

index volatilities, and between index skewness. There is a strongly negative correlation

between CDX spread changes and SPX returns (-0.802), a highly positive correlation between

volatility changes (0.749), and a somewhat more moderate negative correlation between

skewness changes (-0.368).25 This correlation structure also holds true in the ex-Covid-19

24Figure IA5 in the Internet Appendix shows the smile dynamics during the Covid-19 crisis.
25In the interest of brevity, we focus on these three key cross-market correlations. In Section IA.4 of the
Internet Appendix, we report additional cross-market correlations. Market practitioners often focus on the
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sample.

Figure 4 illustrates the within- and cross-market interactions for the full sample. The

scatterplots along the diagonal show the cross-market interactions, while the scatterplots

below (above) the diagonal show the CDX-market (SPX-market) interactions. The red lines

show the fits of linear regressions and provide a visual representation of the correlations

reported in Tables 3 and 4 (the yellow lines are discussed in Section 5 below).

4 A structural model for pricing index options

We now propose a structural model to price credit and equity index options consistently

with the debt and equity claims on each firm in the index. We model each individual firm’s

CDS and equity following Merton’s (1974) seminal paper as, respectively, a put and call

option on the underlying asset value of the firm. To address the term structure of credit

spreads, we allow the outstanding debt to have different maturities (as in Geske (1977)), and

to better match short-term credit spreads as well as index options, we model the dynamics

of firm asset value as a jump-diffusion process (as in Merton (1976)).26 We follow Vasicek

(1987) in modeling the index portfolio as a large homogeneous portfolio and use the law

of large numbers to obtain an explicit solution for credit and equity index dynamics and,

consequently, for index options. Our model setup shares many features with Bai et al.

(2019b). Among the key differences is that while they assume an identical maturity for the

firm’s outstanding debt and for the equity options, we allow for different maturities. This

is important because the maturities of the credit and equity index options are much shorter

relation between the CDX spread and SPX volatility (VIX). Our structural model, laid out in Section 4,
shows that this is not the most natural relation to consider given that CDX is an option on firm value,
while SPX options are compound options. A more apples-to-apples comparison is between index changes
or between index volatility changes. Indeed, we find that the correlation between CDX spread changes and
SPX volatility changes is 0.710 which is lower (in absolute value) than the correlations between CDX spread
changes and SPX returns as well as between index volatility changes.

26Allowing for jumps is crucial to fit the term structure of credit risk; see, e.g., Collin-Dufresne et al. (2012).
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than the maturity of the underlying credit index. Further, while they rely on numerical

integration to price equity index options, we derive closed-form expressions for all derivative

prices, which considerably speeds up the calibration of the model.

4.1 The firms’ assets

We assume that each individual firm in the index has an asset value Ai
t that is driven by

a component At, which is common to all firms and exposed to systematic Brownian (dWt)

and pure-jump (dNt) shocks, and a firm-specific residual component, which is exposed to

idiosyncratic Brownian (dW i
t ) and pure-jump (dN i

t ) shocks. Specifically, we assume that the

risk-neutral asset dynamics of (ex-ante identical) individual firms are given by

dAi
t

Ai
t

=
dAt

At

+
√

1− ρσdW i
t + (eγi − 1)dN i

t − λiνidt

dAt

At

= (r − δ)dt+
√
ρσdWt + (eγ − 1)dNt − λνdt,

where Wt and W i
t are independent Brownian motions, Nt and N i

t are independent Poisson

counting processes with intensities λ and λi, respectively, γ ∼ N (m, v) and γi ∼ N (mi, vi)

are independent normal random variables, and we define ν = E[eγ − 1] = em+ v
2 − 1 and

νi = E[eγi − 1] = emi+
vi
2 − 1. We assume that all the asset payouts, δAi

t, go to equity

holders.27

We can rewrite the individual firm asset value as28

Ai
T = AT e

− 1

2
(1−ρ)σ2T+

√
1−ρσW i

T e−λiνiT+γiN
i
T , (3)

27For expositional ease, we assume a constant risk-free interest rate, r. It is straightforward to incorporate a
deterministic term structure into the model, and we do so when implementing the model.

28Note the abuse of notation here (and throughout the paper): γN means the sum of N i.i.d. random variables
with the same distribution as γ.
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where the common factor AT is given by

AT = A0e
(r−δ)T e−

1

2
ρσ2T+

√
ρσWT e−λνT+γNT . (4)

Note that conditional on the number of idiosyncratic and systematic jumps, Ai
T has a log-

normal distribution.

4.2 The firms’ debt

We consider a simplified debt structure with two outstanding bonds: a short-term bond with

principal D1 and maturity date T1, and a long-term bond with principal D2 and maturity

date T2 > T1.
29 We assume that repayments of principals are made by equity holders, via

‘out-of-pocket’ side payments, so that the asset value process is not affected.30 Thus, equity

holders will choose to default at T1 if the continuation value from holding on to the equity

is worth less than the principal payment D1 they owe to debt holders at that time. This

determines an endogenous default threshold, Φ, at T1, where Φ is the asset value such that,

right after D1 has been paid by equity holders, the equity value equals D1. At T2, the

default threshold is D2, as in the standard Merton (1974) model. In case of default, we

assume that a fraction α of assets is paid out to debt holders, while a fraction 1 − α is lost

because of bankruptcy costs. Finally, if the firm defaults at T1, we assume that payments to

debt holders are proportional to principal, so that holders of the short-term bond are paid

a fraction R1 = α D1

D1+D2
of assets, while holders of the long-term bond are paid a fraction

R2 = α D2

D1+D2
. Therefore, the loss-given-default per dollar of principal is 1− αAi

T1

D1+D2
on both

bonds if the firm defaults at T1 and 1− αAi
T2

D2
on the long-term bond if the firm defaults at T2.

29This is the most parsimonious debt structure that allows us to address the term structure of credit spreads
and to generate variation in the risky annuity factor for long-term CDX contracts. In principle, the model
can be solved with an arbitrary number of bonds.

30This is a standard assumption in dynamic capital structure models; see, for example, Black and Cox (1976)
and Leland (1994).
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4.3 Bond, equity, and CDS valuation

We value bonds, equity, and CDS contracts at time T0, the expiration of options contracts.

The value of the short-term bond is given by

Bi
1(T0) = e−r(T1−T0)

(
D1ET0

[1{Ai
T1

≥Φ} ] + ET0
[R1A

i
T1
1{Ai

T1
<Φ} ]

)
,

and the value of the long-term bond is given by

Bi
2(T0) = e−r(T2−T0)

(
D2ET0

[1{Ai
T1

≥Φ,Ai
T2

≥D2} ] + ET0
[αAi

T2
1{Ai

T1
≥Φ,Ai

T2
<D2} ]

)

+ e−r(T1−T0)ET0
[R2A

i
T1
1{Ai

T1
<Φ} ].

The equity value is given by the asset value less the value of the two bonds and the

present value of the expected bankruptcy costs; that is,

Si
T0
(Ai

T0
) = Ai

T0
− e−r(T1−T0)

(
D1ET0

[1{Ai
T1

≥Φ} ] + ET0
[Ai

T1
1{Ai

T1
<Φ} ]

)

− e−r(T2−T0)
(
D2ET0

[1{Ai
T1

≥Φ,Ai
T2

≥D2} ] + ET0
[Ai

T2
1{Ai

T1
≥Φ,Ai

T2
<D2} ]

)
.

Finally, consider a CDS contract from T0 to T2 with unit notional. The value of the

protection leg is

Proti2(T0) = e−r(T1−T0)ET0
[(1− αAi

T1

D1 +D2
)1{Ai

T1
<Φ} ]+e−r(T2−T0)ET0

[(1−αAi
T2

D2
)1{Ai

T1
≥Φ,Ai

T2
<D2} ],

and the value of the risky annuity (assuming that coupons are paid continuously) is

Ai
2(T0) =

∫ T1

T0

e−r(t−T0)dt+

∫ T2

T1

e−r(t−T0)dtET0
[1{Ai

T1
≥Φ} ].
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With a coupon rate of C, the upfront amount of the CDS contract is

U i
2(T0) = Proti2(T0)− C ×Ai

2(T0)

= e−r(T1−T0)ET0
[(1− αAi

T1

D1 +D2
+ C1)1{Ai

T1
<Φ} ]

+ e−r(T2−T0)ET0
[(1− αAi

T2

D2

)1{Ai
T1

≥Φ,Ai
T2

<D2} ]− C0 − C1e
−r(T1−T0),

where we have defined

C0 = C

∫ T1

T0

e−r(t−T0)dt and C1 = C

∫ T2

T1

e−r(t−T1)dt.

4.4 CDX and SPX

We value the CDX and SPX indexes at time T0. The upfront amount of the CDX is a simple

average of the upfront amounts of the N = 125 single-name CDSs for the index constituents.

Because N is large, we approximate the index upfront amount by letting N → ∞. In this

case, we obtain a simple analytical expression for the index upfront amount via the law of

large numbers, which in turn allows us to price CDX options analytically. The index upfront

amount, conditional on the common factor AT0
, is given by31

UT0
(AT0

) = lim
N→∞

1

N

N∑

i=1

U i
2(T0)

= E[U i
2(T0)|AT0

]

= e−r(T1−T0)
(
(1 + C1)E[1{Ai

T1
<Φ} |AT0

]− α

D1 +D2
E[Ai

T1
1{Ai

T1
<Φ} |AT0

]
)

+ e−r(T2−T0)
(
E[1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]− α

D2

E[Ai
T2
1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]
)

− C0 − C1e
−r(T1−T0).

31In case of an infinite number of firms, At is identifiable as the limit of the firms’ average asset value at time t.
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Similarly, the value of the SPX is given by

ST0
(AT0

) = lim
N→∞

1

N

N∑

i=1

Si
T0
(AT0

)

= E[Si
T0
|AT0

]

= AT0
− e−r(T1−T0)

(
D1E[1{Ai

T1
≥Φ} |AT0

] + E[Ai
T1
1{Ai

T1
<Φ} |AT0

]
)

− e−r(T2−T0)
(
D2E[1{Ai

T1
≥Φ,Ai

T2
≥D2} |AT0

] + E[Ai
T2
1{Ai

T1
≥Φ,Ai

T2
<D2}} |AT0

]
)
.

Closed-from solutions for all the expectations in the index formulas in terms of univariate

and bivariate normal distributions are given in Appendix A.1.

4.5 CDX and SPX options

The time-0 value of a CDX call option with strike K and expiration at T0 is

CCDX
0 = e−rT0E0[max(UT0

(AT0
)−K, 0)]

= e−rT0E0

[(
e−r(T1−T0)

(
(1 + C1)E[1{Ai

T1
<Φ} |AT0

]− α

D1 +D2
E[Ai

T1
1{Ai

T1
<Φ} |AT0

]
)

+ e−r(T2−T0)
(
E[1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]− α

D2

E[Ai
T2
1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]
))

1{AT0
<A}

]

− e−rT0K̃E0[1{AT0
<A} ]

= e−rT1

(
(1 + C1)E0[1{AT0

<A,Ai
T1

<Φ} ]−
α

D1 +D2
E0[A

i
T1
1{AT0

<A,Ai
T1

<Φ} ]
)

+ e−rT2

(
E0[1{AT0

<A,Ai
T1

≥Φ,Ai
T2

<D2} ]−
α

D2

E0[A
i
T2
1{AT0

<A,Ai
T1

≥Φ,Ai
T2

<D2} ]
)

− e−rT0K̃E0[1{AT0
<A} ],

where

K̃ = K + C0 + C1e
−r(T1−T0)
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and A is the unique value such that UT0
(A) = K, and we use the fact that UT (A) is decreasing

in A.

The time-0 value of an SPX call option with strike K and expiration at T0 is

CSPX
0 = e−rT0E0[max(ST0

(AT0
)−K, 0)]

= e−rT0E0

[(
AT0

− e−r(T1−T0)
(
D1E[1{Ai

T1
≥Φ} |AT0

] + E[Ai
T1
1{Ai

T1
<Φ} |AT0

]
)

− e−r(T2−T0)
(
D2E[1{Ai

T1
≥Φ,Ai

T2
≥D2} |AT0

] + E[Ai
T2
1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]
))

1{AT0
≥A}

]

− e−rT0KE0[1{AT0
≥A} ]

= e−rT0E0[AT0
1{AT0

≥A} ]− e−rT1

(
D1E0[1{AT0

≥A,Ai
T1

≥Φ} ] + E0[A
i
T1
1{AT0

≥A,Ai
T1

<Φ} ]
)

− e−rT2

(
D2E0[1{AT0

≥A,Ai
T1

≥Φ,Ai
T2

≥D2} ] + E0[A
i
T2
1{AT0

≥A,Ai
T1

≥Φ,Ai
T2

<D2} ]
)

− e−rT0KE0[1{AT0
≥A} ],

where A is the unique value such that ST0
(A) = K, and we use the fact that ST (A) is

increasing in A.

Closed-from solutions for all the expectations in the index option formulas in terms of

univariate, bivariate, and trivariate normal distributions are given in Appendix A.1.

4.6 In-sample fit to index option smiles

Before using the model to study the joint valuation of CDX and SPX options, we verify that

it is sufficiently flexible to match the CDX and SPX implied volatility smiles, individually.

To show the importance of the various components of the asset return process, we start with

the pure-diffusion version of the model, then add the systematic jumps, and finally add the

idiosyncratic jumps. For illustration, we consider the pricing of two-month (M2) options on

the last trading day in 2019, December 31. On this day, the 1Y and 5Y CDX spreads are
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8.3 and 45.3 bps, respectively, and the level of the SPX is 3226.7. We calibrate the model

to match the 5Y CDX spread and the SPX level perfectly, and minimize the sum of squared

pricing errors for index options—either CDX or SPX options.32

The diffusion version is basically the Merton (1974) model applied to multiple firms and

allowing for two debt maturities. The red line in the left panel in Figure 5 displays the

in-sample fit to the CDX implied volatility curve. In striking contrast to the data, the fitted

implied volatility curve is not only much too flat, but also exhibits a negative slope. That

is, the diffusion version does not even qualitatively match the pattern in the data. This

is a robust result that obtains on each trading day in the sample. We elaborate on this

finding in Section IA.5 of the Internet Appendix, where we prove analytically that in the

classic diffusion-based Merton (1974) setting the leverage effect generates a negative implied

volatility skew for both credit and equity options. The pure diffusion model also vastly

underestimates the 1Y CDX spread, with a model-implied value of less than one basis point.

The blue line in the figure shows a very good fit for the version with systematic jumps.

Intuitively, a negative (risk-neutral) mean systematic jump size in firms’ asset values makes

the (risk-neutral) CDX spread distribution more positively skewed and increases the value

of high-strike options relative to low-strike options. The root mean squared error (RMSE)

in terms of implied volatilities drops from 0.1862 to 0.0128. Having systematic jumps in the

asset value process is, therefore, critical for matching the observed CDX implied volatility

curves.33 Despite the jump component, this version still significantly underestimates the 1Y

CDX spread.

To match both the CDX implied volatility curves and the CDX term structure, we also

32We also calibrate to the SPX dividend yield, and the index leverage ratios. The general calibration procedure
is described in more detail in Section 5. The calibrated parameters for each version of the model are given
in Table IA.2 in the Internet Appendix.

33An alternative device for improving the basic model is adding stochastic volatility to the asset value process
with a negative correlation between asset returns and innovations to volatility. This would also make the
(risk-neutral) CDX spread distribution more positively skewed. We focus on jumps because the options
in our data set have short maturities and jumps are better at generating skewed distributions over short
horizons. Furthermore, jumps have the advantage of preserving closed-form solutions to index options.
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need idiosyncratic jumps in the asset value process. For this version, we add the 1Y CDX

spread to the set of instruments that are matched perfectly; yet, the fit to CDX options is

virtually unchanged with a CDX implied volatility curve that is visually indistinguishable

(and, therefore, not displayed in the figure) and an RMSE of 0.0121.

For completeness, we also illustrate the model’s in-sample performance when we fit to

SPX options instead of CDX options (all the other aspects of the calibration are the same).

The right panel in Figure 5 displays the fitted SPX implied volatility curves. The diffusion

version (red line) correctly generates a downward-sloping curve, although it is much too flat.

In contrast, the version with systematic jumps (blue line) has a very good fit consistent with

results in Bai et al. (2019b).

These results show that our structural model can successfully match CDX and SPX

option prices, separately. In the next section, we investigate if the model can also jointly

match these option prices.

5 The relative pricing of index options

5.1 Calibration procedure

The overall empirical strategy is to calibrate the model to the CDX term structure, the SPX

level, and SPX options, and then study the out-of-sample fit to CDX options. Specifically,

the calibration procedure forces a perfect fit to the 1Y and 5Y CDX and the SPX level (as

well as the SPX dividend yield and the short- and long-term index leverage ratios), and

minimizes the sum of squared pricing errors for SPX options.34 It is especially important

to price the 5Y CDX and the SPX level accurately; otherwise, it is difficult to interpret

34See Section IA.6 in the Internet Appendix for details on the computation of the index leverage ratios using
Compustat data. The SPX dividend yield is obtained from the put-call parity relation for SPX options.
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option pricing errors. The model is re-calibrated each Wednesday in the sample.35 Note

that idiosyncratic jump risk is largely pinned down by the 1Y CDX, which is essentially

a deep out-of-the-money put option on firm assets. This makes it difficult to identify all

idiosyncratic jump parameters; therefore, we follow Collin-Dufresne et al. (2012) in fixing

mi = −2 and vi = 0 which implies that an idiosyncratic jump leads to almost certain

default for a company. We set bankruptcy costs to 20%, corresponding to α = 0.80. This is

roughly in line with empirical estimates (see, for example, Andrade and Kaplan (1998) and

Davydenko, Strebulaev, and Zhao (2012)), but we show below that our results are not very

sensitive to the level of bankruptcy costs. Interest rates are obtained by first bootstrapping

the LIBOR/swap curve and then interpolating. In total, there are 10 parameters to be

calibrated: A0, D1, D2, δ, σ, ρ, λ, m, v, and λi.
36 More details on the calibration procedure

are given in Section IA.7 of the Internet Appendix.

5.2 Results

Table 5 reports the sample mean and sample standard deviation of the parameters. The

systematic jump intensity is 0.953, on average, with a mean jump size of -0.088 and a jump

size standard deviation of 0.077—all of which appear plausible. The idiosyncratic jump

intensity is 0.0032, on average, suggesting a small jump-to-default risk. The instantaneous

(risk-neutral) quadratic variation of log asset returns is

1

dt
V ar(d logAi

t) = ρσ2 + (1− ρ)σ2 + λ(m2 + v) + λi(m
2
i + vi),

35If Wednesday is not a trading day, we calibrate on the preceding Tuesday instead. The sample comprises 426
weekly observations from February 29, 2012 to April 29, 2020. Date-by-date model re-calibration is typical
of papers that study the relative pricing of derivatives securities; see, e.g., Coval et al. (2009) on the relative
pricing of CDX tranche swaps and SPX options and Kelly, Lustig, and Nieuwerburgh (2016) on the relative
pricing of stock option baskets and equity index options.

36Because we re-calibrate the model on each date, we do not distinguish between state variables and parameters.
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the sample average of which is 0.142, corresponding to a volatility of 0.376. The sample

average of the systematic part, ρσ2 + λ(m2 + v), is 0.0159, corresponding to a volatility of

0.126. The sample average of the instantaneous (risk-neutral) asset correlation between any

two index constituents is 0.113.

From the calibrated model, we price CDX options and compare the model-implied prices

to the data. Specifically, on each date, we compute the mean pricing error (ME) and RMSE

across all CDX options in terms of implied volatilities. For comparison, we do the same for

SPX options. Table 6 reports the sample means of the resulting ME and RMSE time series.

The model fits SPX options very well with an average ME of essentially zero and an average

RMSE of roughly one percentage point implied volatility. On the other hand, there is a

large difference between the model-implied CDX option prices and the data with an average

ME of minus 21 percentage points implied volatility and an average RMSE of roughly 22

percentage points. That the out-of-sample CDX RMSE is larger than the in-sample SPX

RMSE is not surprising. More striking is the fact that the model-implied CDX option prices

are systematically much lower than the prices in the data.

To determine which dimensions of CDX option prices the model has difficulty matching,

we run the regression (2) on the fitted implied volatilities and measure the model fit in terms

of how close the β-estimates obtained from the fitted data are to the original β-estimates.

In Figure 3, the red lines show the β-estimates from the fitted data. The figure confirms

the model’s accurate (in-sample) fit to SPX options in terms of both volatility (middle-right

panel) and skewness (lower-right panel). The figure also shows that the model has a relatively

accurate (out-of-sample) fit to CDX skewness (lower-left panel). However, the figure shows

that the model has a poor (out-of-sample) fit to CDX volatility. While the model appears

to capture the variation in volatility relatively well, the level of model-implied volatility is

consistently too low; indeed, the sample means of βCDX
0 in the data and the fitted data are

0.471 and 0.285, respectively.
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As an example, Figure 6 plots the fit to the SPX and CDX implied volatility smiles on the

last Wednesday in the sample, April 29, 2020. The model has a very good fit to SPX options

and correctly generates a positively skewed CDX volatility smile. However, the model clearly

underestimates the level of the CDX volatility smile.

Figure 7 shows the time series of CDX option pricing errors in terms of βCDX
0 . The left

panel displays the difference between βCDX
0 in the data and the fitted data (i.e., the difference

between the blue and red line in the middle-left panel of Figure 3), while the right panel

displays the relative difference. In absolute terms, pricing errors trend downwards in the

second half of the sample until the onset of the Covid-19 crisis, when they increase sharply.

In relative terms, we observe the same downward trend, and the effect of the Covid-19 crisis

is much less noticeable.

Next, we investigate the extent to which the within- and cross-market correlations com-

puted from the fitted data match the patterns discussed in Section 3. For SPX, Table 3 shows

a close (in-sample) match to the correlations in the data. More importantly, for CDX the

table shows a relatively good (out-of-sample) match to the correlations between spread and

volatility (0.517 vs. 0.675 in the data) and between volatility and skewness (0.286 vs. 0.397

in the data); however, contrary to the data, the correlation between spread and skewness is

not significantly different from zero.

Table 4 shows that the model (again, out-of-sample) correctly generates a highly positive

(if slightly too high) correlation between SPX and CDX volatility (0.873 vs. 0.749 in the

data) and accurately matches the moderately negative correlation between SPX and CDX

skewness (-0.368 vs. -0.380 in the data).37 All these results also hold true in the ex-Covid-19

sample.

Finally, the yellow lines in Figure 4 show the fits of linear regressions applied to the

fitted data. Focusing on the out-of-sample results, Panels E and I show the cross-market

37Note that, by design of the calibration procedure, the correlation between SPX returns and CDX spread
changes is matched exactly.
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interactions while panels D, G, and H show the CDX-market interactions. These are largely

in line with the observations from Tables 3 and 4.

5.3 Robustness

Robustness checks are reported in Tables 5 and 6.

5.3.1 Increasing bankruptcy costs, α = 0.5

We increase bankruptcy costs to 50%, corresponding to α = 0.50. With higher expected loss-

given-default, the default likelihood needs to decrease to preserve the fit to the CDX term

structure. This is achieved via increasing A0 slightly and decreasing idiosyncratic diffusive

risk (lower σ and higher ρ) and jump risk (lower λi) in such a way that the SPX level

is preserved. Table 6 shows that the fit to CDX options improves slightly from the main

specification.

5.3.2 No idiosyncratic jumps, λi = 0

Without idiosyncratic jumps it is not possible to fit the 1Y CDX (see Section 4.6). Therefore,

when calibrating the model, we remove the 1Y CDX from the objective function. Table 6

shows that the fit to CDX options is slightly better than in the main specification.

5.3.3 No jumps, λ = λi = 0

In a pure diffusion model, it is not possible to fit the entire implied volatility smile (see,

again, Section 4.6). Therefore, when calibrating the model, we remove OTM SPX options

(as well as the 1Y CDX) from the objective function. In this case, Table 6 shows the fit to

ATM options only. Clearly, the discrepancy between model-implied and actual CDX option

prices is as large for ATM options in this very parsimonious model as it is for all options in

the general model.
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To summarize, the model captures many aspects of the joint dynamics of the credit and

equity index options data; however, it is not able to capture the relative levels of CDX and

SPX option prices.

6 Interpretation of results

In interpreting the results, we face the joint-hypothesis problem (e.g., Fama (1970)) that

we can never definitively tell whether the results reflect lack of integration between the two

markets or a misspecified pricing model, or some combination. Instead, in this section, we

discuss different potential explanations for our results.

6.1 Model misspecification

Although Section 5.3 shows that our results are robust within the boundaries of the model,

the model itself relies on a number of simplifying assumptions, some of which we discuss

here. First, the model assumes that firms are ex-ante identical, when in fact they exhibit

significant heterogeneity (see below). In the Internet Appendix, Section IA.8 we solve an

extended version of the model that allows for heterogeneity in leverage across firms. We

show that, relative to the benchmark model, matching the mean, dispersion, and skewness

of the leverage distribution for index constituents leads to lower CDX option prices relative

to SPX option prices, hence exacerbating the valuation puzzle.

Second, the model prices index options assuming an infinite number of index constituents.

In the Internet Appendix, Section IA.9, we use simulations to price index options for a finite

number of index constituents and quantify the bias in the analytical option pricing formulas.

We show that the (downward) bias is small, but greater for CDX options than for SPX

options because the CDX index has fewer constituents; hence, accounting for the actual

number of index constituents would raise CDX option prices relative to SPX option prices.
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However, the effect is small relative to the magnitude of the valuation puzzle.

Third, the model does not incorporate stochastic volatility in the asset process. Instead,

we compensate for this by re-calibrating model parameters on each trading day. From a

time-series perspective, it would clearly be relevant to introduce stochastic asset volatility.

However, from a cross-sectional perspective using short-term options, which is the focus of

our paper, the effect is likely to be more muted because jumps are more important than

stochastic volatility for valuing short-term options; see, e.g., Das and Sundaram (1999).38

6.2 Differences in index compositions

Our analysis does not require the two indexes to be identical in terms of names, but rather

in terms of risk characteristics. To assess the similarity of the indexes, we focus on four

characteristics that are central to the structural model: rating (as a proxy for the physical-

measure default probability), leverage, and total and systematic asset return volatility.39

Figure 8 compares the indexes in terms of leverage and ratings. Panels A and B show

the distribution of firm-quarter leverage observations for the CDX and SPX constituents,

respectively.40 Clearly, the distribution for SPX constituents has a higher dispersion with

relatively more low-leverage (even unlevered) and high-leverage firms. However, on average,

leverage is similar across the two indexes with a mean (median) of 0.277 (0.244) for CDX

vs. 0.238 (0.200) for SPX.

Panels C and D show the distribution of firm-quarter rating observations for the two sets

38Du et al. (2019) investigate the effect of stochastic asset volatility on credit spreads and find that it mainly
affects medium- to long-term spreads. Introducing stochastic asset volatility into our framework would
significantly increase complexity because of the need to value compound options with multiple state variables.

39Section IA.10 in the Internet Appendix details the computation of asset return volatility. In a nutshell, asset
returns are leverage-weighted averages of stock and synthetic bond returns, where stock returns are from
CRSP and synthetic bond returns are computed using single-name CDS data from Markit. The systematic
component of asset return volatility is obtained from a one-factor model.

40In the figure, we focus on total leverage. In the Internet Appendix, we split total leverage into short- and
long-term leverage and find similar results, see Figure IA8. The fraction of CDX (SPX) constituents for
which we are able to compute leverage varies between 0.832 and 0.888 (0.892 and 0.984).
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of index constituents.41 Again, the distribution for SPX constituents has a higher dispersion,

but for both indexes the mean and median rating is BBB+.42

Figure 8 compares the indexes in terms of asset return volatility. Panels A and B show the

distribution of firm-quarter observations of total asset return volatility for the CDX and SPX

index constituents, respectively. While the distribution for SPX constituents displays slightly

higher dispersion (standard deviation of 0.068 for CDX vs. 0.080 for SPX), the average asset

volatility is very similar with a mean (median) of 0.167 (0.154) for CDX vs. 0.173 (0.158)

for SPX.

Since the non-diversifiable component of volatility is the crucial driver of index option

value, we plot the distribution of firm-quarter observations of systematic asset return volatil-

ity in Panels C and D. These distributions are strikingly similar with a mean (median)

[standard deviation] of 0.092 (0.085) [0.045] for CDX vs. 0.098 (0.089) [0.052] for SPX.

Given these results, it seems unlikely that differences in the risk characteristics that

drive valuation in our structural model (such as leverage, total and systematic volatility) can

explain our findings. In particular, a potential explanation for the overpricing of CDX options

could be a relatively higher systematic asset return volatility among CDX constituents, but

this is clearly not what we observe in the data.

6.3 Differences in economic states spanned by options

For the comparison between model-implied and actual CDX option prices to be meaningful,

we need that SPX options span roughly the same set of economic states as CDX options.

To check this, we translate the strike ranges of CDX and SPX options into strike ranges in

41Note that ratings data in Compustat is only available up until third quarter of 2017. During this time period,
the fraction of CDX (SPX) constituents with ratings information varies between 0.888 and 0.912 (0.864 and
0.892).

42When the CDX index is refreshed every six months, it consists only of investment-grade firms (i.e., those
rated BBB- and above). The few BB-observations in the figure come from firms that were downgraded after
index launch.
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terms of the common factor, A.

For CDX options, Amin is the value of the common factor below which the highest-strike

call option expires in the money, and Amax is the value above which the lowest-strike put

option expires in the money.43 Similarly, for SPX options, Amin is the value of the common

factor below which the lowest-strike put option expires in the money, and Amax is the value

above which the highest-strike call option expires in the money.44

Figure 10 plots the time series of the strike range of CDX and SPX options in terms of

the common factor. Specifically, on each observation date and for each option maturity, we

express Amin and Amax relative to the forward value of the common factor, Afwd; that is, as

Amin−Afwd

Afwd and Amax−Afwd

Afwd . Clearly, CDX and SPX options span roughly the same economic

states.

6.4 Stochastic bankruptcy costs

The spanning result in the previous section only holds true in the context of the model.

A richer model with a credit-specific factor would break the tight link between CDX and

SPX options and would also provide an economic rationale for why both types of options

are traded. What might such a credit-specific factor be? A natural candidate would be

systematic variation in bankruptcy costs which would impact bond recovery upon default

and thus affect credit derivatives, but not equity derivatives since equity always recovers

zero in bankruptcy.45 In the Internet Appendix, Section IA.11 we add stochastic bankruptcy

costs to the model and derive analytical solutions for all derivatives. Specifically, we assume

that systematic bankruptcy costs follow a continuous-time Markov chain independent of At

and Ai
t. We show that the CDX depends on the conditional expectation of bankruptcy costs,

43Recall that UT0
(A) is decreasing in A; therefore, Amin solves UT0

(Amin) = Kmax and Amax solves
UT0

(Amax) = Kmin.
44Here, Amin solves ST0

(Amin) = Kmin and Amax solves ST0
(Amax) = Kmax.

45An alternative could be a credit-specific liquidity factor along the lines of He and Xiong (2012) or He et al.
(2020), for example.
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while CDX options also depend on bankruptcy cost volatility.

To illustrate the potential for this model to account for the discrepancy in CDX option

prices, we consider a simple three-state Markov chain. We assume that bankruptcy costs in

the three states are 40%, 20%, and zero, corresponding to α-values of 0.6, 0.8, and 1. We

start out in the middle state, and assume that the transition matrix has the form

Q =




−qin qin 0

qout −2qout qout

0 qin −qin



,

where qout (qin) determines the probability of moving away from (towards) the middle state.

Because states one and three are equally likely and persistent, conditional on being in the

middle state, the expected future bankruptcy costs are 20% (α = 0.80) as in our benchmark

model. Therefore, the CDX term structure is unchanged, and qout and qin only affect CDX

options. On each day in the sample, we take the calibrated parameters of the benchmark

model as given (and, hence, preserve the fit to all dimensions of the data except CDX options)

and then calibrate qout and qin to minimize the sum of squared pricing errors for ATM CDX

options.46

The left panel in Figure 11 shows time series of the mean error (in terms of implied

volatilities) for ATM CDX options. Except during the Covid-19 crisis, the mean error is

virtually zero. The right panel shows the three-month conditional (risk-neutral) standard

deviation of bankruptcy costs. This fluctuates around 0.15 indicating that very high un-

certainty about systematic bankruptcy costs is needed to reconcile the pricing of CDX and

SPX options. It is not clear whether this implied volatility of bankruptcy costs is consistent

with the actual variability and risk premium associated with bankruptcy costs, which are

46In our very parsimonious setting, we only have two degrees of freedom; therefore, we focus on matching
ATM CDX options. We leave for future research the question of whether with more states and/or more
parameters in the transition matrix it is possible to match the entire CDX option surface.
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notoriously difficult to measure (e.g., Almeida and Philippon (2007)).

6.5 Structural demand for CDX options

Another possibility, along the lines of Gârleanu, Pedersen, and Poteshman (2009), is that

demand pressure in CDX options pushes their prices above fair values implied by SPX

options. Indeed, anecdotal evidence suggests that there is a structural demand for CDX

call options to hedge against widening of credit spreads. Specifically, there appears to be

a significant regulatory-driven demand by banks who seek to hedge their credit valuation

adjustment (CVA) exposures in order to reduce their regulatory capital.47 Unfortunately,

we cannot directly quantify this demand because we do not have access to trader identities

in our transaction data set. However, via regulatory filings we can quantify the amount of

risk-weighted assets (RWAs) attributed to CVA risk across large banks to get an idea about

the magnitudes of CVA exposures and, hence, the potential demand for CDX call options.

Figure IA16 in the Internet Appendix shows the evolution of RWAs for CVA risk across the

eight US global systemically important banks. Between Q4 2015 and Q1 2020 it averages

228 bln USD (it jumps markedly to 271 bln USD in Q1 2020); hence, the regulatory-driven

demand can potentially account for a significant fraction of the trading volume documented

in Section 2.3.48

6.6 Trading CDX vs. SPX options

Finally, we compare the profitability of selling volatility in the two markets. We consider a

strategy of selling ATM straddles within each maturity category on a daily basis and with

47In the aftermath of the financial crisis, the Basel III regulation introduced a new capital charge—the CVA
risk charge—to cover the risk of deterioration in the credit worthiness of counterparties. Both CDX and
CDX options are eligible hedge instruments, but due to a discrepancy between the regulatory and accounting
treatment of counterparty risk, many banks prefer to use CDX options; see, e.g., Becker (2014).

48Because traded CDX options have short maturities, a bank that hedges CVA risk exposures via options
would need to frequently roll over its positions.
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a holding period of one day (a short holding period ensures that the delta remains close

to zero). In addition to holding the option premium in a margin account, we assume that

an initial amount of capital is required when selling options. We further assume that the

required capital is proportional to the option premium and adjust the proportionality factor

to achieve a 10% unconditional annualized volatility of realized excess returns within each

option maturity category.49

Table 7 shows summary statistics of returns for each option maturity as well as for

an equally weighted (EW) portfolio of the three option maturities.50 Across all maturities

and both including and excluding the Covid-19 crisis, selling CDX volatility generates higher

and more statistically significant average excess returns and higher Sharpe ratios than selling

SPX volatility. For instance, for the full sample (Panel A), the EW portfolio generates an

annualized Sharpe ratio of 1.744 in the CDX market vs. 0.659 in the SPX market. Because

of the large increase in volatility during the Covid-19 crisis, the strategy in both markets

performs better during the ex-Covid-19 sample (Panel B).51

We also consider a short-long strategy of selling CDX straddles vs. buying SPX strad-

dles.52 This strategy generates high Sharpe ratios, that are typically higher than that of

selling SPX volatility outright, but lower than selling CDX volatility outright. For instance,

for the full sample, trading the EW portfolios against each other generates an annualized

Sharpe ratio of 0.877. Further, the higher-order moments of the long-short strategy are

more attractive, with the return distributions being roughly symmetric (instead of highly

49A similar approach is taken in Duarte, Longstaff, and Yu (2007) in their analysis of fixed income arbitrage
strategies. The choice of 10% is inconsequential for our conclusions. Section IA.12 in the Internet Appendix
provides more details on the trading strategy. It also shows that the results are robust to assuming that the
required capital is constant over time (rather than varying with the option premium).

50When computing performance, we only consider returns on those days where returns are available for all
option maturities and for both markets.

51A contemporaneous paper by Ammann and Moerke (2019) constructs synthetic variance swap contracts from
CDX options and finds that selling CDX variance swaps generates higher Sharpe ratios than selling SPX
variance swaps in a pre-Covid-19 sample. See also Chen, Doshi, and Seo (2020).

52We assume that the same amount of capital is required when buying SPX straddles as when selling them
so that we maintain a 10% unconditional annualized volatility of realized excess returns. The short-long
strategy then allocates 50% of funds to selling CDX straddles and 50% to buying SPX straddles.
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negatively skewed) and much less leptokurtic. Figure 12 shows the evolution of one dollar

invested in each of the EW strategies at the beginning of the sample. Clearly, the short-long

strategy avoids the occasional large drawdowns from selling volatility outright.

Together, these results are consistent with the demand-pressure hypothesis (Section 6.5).

However, the results could also be consistent with the bankruptcy-cost hypothesis (Section

6.4) provided sellers of CDX options require a large compensation for bearing systematic

bankruptcy cost uncertainty.

7 Conclusion

In recent years, a liquid market for credit index (CDX) options has developed. We study

the extent to which these options are priced consistently with S&P 500 (SPX) equity index

options. We consider a rich structural credit risk model in which firm assets follow a jump-

diffusion process with idiosyncratic and systematic risk, and we derive analytical expressions

for CDX and SPX options. Calibrating the model, we find that it captures many aspects

of the joint dynamics of CDX and SPX options. However, it cannot reconcile the relative

levels of option prices, suggesting that credit and equity markets are not fully integrated.

We discuss several potential explanations for this finding, and we show that a strategy of

selling CDX volatility yields significantly higher average excess returns and Sharpe ratios

than selling SPX volatility.
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A.1 Pricing formulas

This Appendix contains the pricing formulas for the model in Section (4).

A.1.1 Valuation of CDX and SPX

From (3) and (4) we have

AT0
= A0e

(r−δ−λν)T0+γNT0
+y

Ai
T1

= A0e
(r−δ−λiνi−λν)T1+γNT1

+γiN
i
T1

+y+z = AT0
e(r−δ−λν)(T1−T0)−λiνiT1+γ(NT1

−NT0
)+γiN

i
T1

+z (5)

Ai
T2

= A0e
(r−δ−λiνi−λν)T2+γNT2

+γiN
i
T2

+y+z+x = AT0
e(r−δ−λν)(T2−T0)−λiνiT2+γ(NT2

−NT0
)+γiN

i
T2

+z+x,

where y, z, and x are independent normal random variables with

vy = ρσ2T0 my = −1

2
vy

vz = (1− ρ)σ2T0 + σ2(T1 − T0) = σ2(T1 − ρT0) mz = −1

2
vz

vx = σ2(T2 − T1) mx = −1

2
vx.

Because, conditional on the number of jumps, future asset values are log-normally dis-

tributed, we obtain the following closed-form solutions for all the expectations (basically

variants of the standard Merton (1976) jump-diffusion model formula):

E[1{Ai
T1

<Φ} |AT0
] =

∞∑

n1,j1=0

PT1−T0

λ (n1)PT1

λi
(j1)N

(
−d−1

)

E[Ai
T1
1{Ai

T1
<Φ} |AT0

] =

∞∑

n1,j1=0

PT1−T0

λ (n1)PT1

λi
(j1)AT0

e(r−δ−λν)(T1−T0)−λiνiT1+n1m+j1mi+
1
2
(n1v+j1vi)N

(
−d+1

)

E[1{Ai
T1

≥Φ,Ai
T2

<D2} |AT0
] =

∞∑

n1,n2,j1,j2=0

PT1−T0

λ (n1)PT2−T1

λ (n2)PT1

λi
(j1)PT2−T1

λi
(j2)N2(d

−
1 ,−d−2 ;−ρ)

E[Ai
T2
1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

] =

∞∑

n1,n2,j1,j2=0

PT1−T0

λ (n1)PT2−T1

λ (n2)PT1

λi
(j1)PT2−T1

λi
(j2)

AT0
e(r−δ−λν)(T2−T0)−λiνiT2+(n1+n2)m+(j1+j2)mi+(n1+n2)

v
2
+(j1+j2)

vi
2 N2

(
d+1 ,−d+2 ;−ρ

)
,
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where N2 denotes the bivariate normal cumulative distribution function,

PT
λ (n) = e−λT (λT )

n

n!
(6)

is the probability of n jumps over a time interval of length T for a Poisson jump counter

with intensity λ, and we define

d−1 =
log

AT0

Φ + (r − δ − λν)(T1 − T0)− λiνiT1 + n1m+ j1mi − 1
2vz√

vz + n1v + j1vi

d+1 =
log

AT0

Φ + (r − δ − λν)(T1 − T0)− λiνiT1 + n1m+ j1mi +
1
2vz + n1v + j1vi√

vz + n1v + j1vi
(7)

d−2 =
log

AT0

D2
+ (r − δ − λν)(T2 − T0)− λiνiT2 + (n1 + n2)m+ (j1 + j2)mi − 1

2 (vz + vx)√
vz + vx + (n1 + n2)v + (j1 + j2)vi

d+2 =
log

AT0

D2
+ (r − δ − λν)(T2 − T0)− λνiT2 + (n1 + n2)m+ (j1 + j2)mi +

1
2 (vz + vx) + (n1 + n2)v + (j1 + j2)vi√

vz + vx + (n1 + n2)v + (j1 + j2)vi

ρ =

√
vz + n1v + j1vi

vz + vx + (n1 + n2)v + (j1 + j2)vi
.

We only show the derivation of the explicit solution for the second expectation, since all

the other expectations can be derived similarly. Substituting from Equation (5) above and

conditioning on the number of jumps we obtain:

E[Ai
T1
1{Ai

T1
<Φ} |AT0

] =

∞∑

n1,j1=0

PT1−T0

λ (n1)PT1

λi
(j1)AT0

e(r−δ−λν)(T1−T0)−λiνiT1×

E[ez+γn1+γij11{Ai
T1

<Φ} |AT0
, N i

T1
= j1, NT1

−NT0
= n1].

Now, since53 z + γn1 + γij1 ∼ N (mz +mn1 +mij1, vz + vn1 + vij1) we obtain:

E[ez+γn1+γij11{Ai
T1

<Φ} |AT0
, N i

T1
= j1, NT1

−NT0
= n1] = emz+mn1+mij1+

1
2
(vz+vn1+vij1)Ẽ[1{

z+γn1+γij1−M̃√
Ṽ

<−d
+
1

} ],

where d+1 is as defined in Equation (7) above and the expectation Ẽ[·] is taken with respect to

a probability measure P̃ equivalent toQ under which z+γn1+γij1 ∼ N (M̃, Ṽ ) with the mean

53Recall that γn1 (γij1) is our short-hand notation for a sum of n1 (j1) i.i.d. normal random variables each
distributed like γ (γi).
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and variance under P̃ given by M̃ = mz+vz+(m+v)n1+(mi+vi)j1 and Ṽ = vz+vn1+vij1.
54

Using the definition of mz and the fact that Ẽ[1{

z+γn1+γij1−M̃√
Ṽ

<−d
+
1

}] = N (−d+1 ) completes the

derivation. Similar derivations apply to all other expectations.

A.1.2 Valuation of CDX and SPX options

Again, we obtain closed-form solution for all the expectations in the CDX option formula
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PT0
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and the SPX option formula
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54Recall that if z ∼ N (mz , vz) then E[ezH(z)] = emz+
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(n0+n1+n2)v+

1
2
(j1+j2)viN3(d

+
0 , d

+
1 ,−d+2 ; ρ01,−ρ02,−ρ12),

where N2 and N3 denote the bivariate and trivariate normal cumulative distribution func-

tions, PT
λ (n) is given in (6), and we define

d−0 =
log(A0

A
) + (r − δ − λν)T0 + n0m− 1

2vy√
vy + n0v

d+0 =
log(A0

A
) + (r − δ − λν)T0 + n0m+ 1

2vy + n0v√
vy + n0v

d−1 =
log A0

Φ + (r − δ − λν − λνi)T1 + (n0 + n1)m+ j1mi − 1
2 (vy + vz)√

vy + vz + (n0 + n1)v + j1vi

d+1 =
log A0

Φ + (r − δ − λν − λνi)T1 + (n0 + n1)m+ j1mi +
1
2 (vy + vz) + (n0 + n1)v + j1vi√

vy + vz + (n0 + n1)v + j1vi

d−2 =
log A0

D2
+ (r − δ − λν − λνi)T2 + (n0 + n1 + n2)m+ (j1 + j2)mi − 1

2 (vy + vz + vx)√
vy + vz + vx + (n0 + n1 + n2)v + (j1 + j2)vi

d+2 =
log A0

D2
+ (r − δ − λν − λνi)T2 + (n0 + n1 + n2)m+ (j1 + j2)mi +

1
2 (vy + vz + vx) + (n0 + n1 + n2)v + (j1 + j2)vi√

vy + vz + vx + (n0 + n1 + n2)v + (j1 + j2)vi

ρ01 =

√
vy + n0v

vy + vz + (n0 + n1)v + j1vi

ρ02 =

√
vy + n0v

vy + vz + vx + (n0 + n1 + n2)v + (j1 + j2)vi

ρ12 =

√
vy + vz + (n0 + n1)v + j1vi

vy + vz + vx + (n0 + n1 + n2)v + (j1 + j2)vi
.
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CDX CDX options

Trades per day 202 18
Median trade size (in million USD) 50 100
Average daily volume (in million USD) 11,133 1,442
Five-year tenor (% of trades) 96.1 98.1
On-the-run series (% of trades) 88.9 94.0
Bespoke contract terms (% of trades) 1.2 8.0
Cleared (% of trades) 90.4 17.6
Block size (% of trades) 24.9 64.3
Capped trade size (% of trades) 22.3 66.5
On-SEF execution (% of trades) 83.9 3.8
Payer (% of trades) — 63.1

Table 1: Descriptive statistics for CDX and CDX option trades
The table shows descriptive statistics for CDX and CDX option trades. Tenor is the initial time to expiration

of the CDX contract (the underlying CDX contract in case of CDX options). The on-the-run series is the

most recently launched CDX contract. A trade is block-sized if the notional amount traded exceeds a certain

minimum block size. Typically, reported trade sizes are capped when the notional amount traded exceeds

USD 100 million or USD 110 million. The sample period is from December 31, 2012 to April 30, 2020. The

sample comprises 371,693 CDX trades and 32,669 CDX option trades.

Days to expiration

Moneyness < 15 15–44 45–74 75–104 105–134 ≥ 135 Total

m < −1.5 0.20 0.24 0.06 0.01 0.00 0.00 0.52
−1.5 ≤ m < −0.5 0.94 3.99 2.94 1.62 0.54 0.39 10.42
|m| ≤ 0.5 2.12 15.28 9.61 6.48 2.27 1.28 37.03
0.5 < m ≤ 1.5 1.53 9.01 10.34 8.75 4.17 2.30 36.10
m > 1.5 1.42 5.96 4.45 2.65 0.97 0.47 15.92

Total 6.21 34.47 27.40 19.51 7.95 4.45

Table 2: Distribution of trading volume across the volatility surface
The table shows the percentage of CDX option volume across the volatility surface. Moneyness is defined

as m = log(K/F (τ))/(σ
√
τ ), where K is the strike, F (τ) is the front-end-protected τ -forward spread, σ

is at-the-money implied volatility, and τ = d/365 is time to expiration, and d is days to expiration. The

underlying of all options is the five-year on-the-run index. The sample period is from December 31, 2012 to

April 30, 2020. The sample comprises 28,409 CDX option trades.
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Panel A: Full sample

Data Model
∆log(CDX) ∆βCDX

0 ∆log(CDX) ∆βCDX
0

∆βCDX
0 0.675 0.517

[0.620,0.724] [0.444,0.584]
∆βCDX

1 0.255 0.397 0.037 0.286
[0.164,0.342] [0.313,0.474] [-0.058,0.132] [0.196,0.371]

∆log(SPX) ∆βSPX
0 ∆log(SPX) ∆βSPX

0

∆βSPX
0 -0.881 -0.851

[-0.901,-0.858] [-0.875,-0.822]
∆βSPX

1 0.765 -0.897 0.676 -0.870
[0.722,0.801] [-0.914,-0.876] [0.620,0.724] [-0.891,-0.845]

Panel B: Ex-Covid-19 sample

Data Model
∆log(CDX) ∆βCDX

0 ∆log(CDX) ∆βCDX
0

∆βCDX
0 0.615 0.525

[0.550,0.672] [0.451,0.592]
∆βCDX

1 0.243 0.525 -0.031 0.309
[0.150,0.333] [0.451,0.592] [-0.128,0.066] [0.219,0.395]

∆log(SPX) ∆βSPX
0 ∆log(SPX) ∆βSPX

0

∆βSPX
0 -0.858 -0.838

[-0.881,-0.830] [-0.864,-0.806]
∆βSPX

1 0.681 -0.836 0.689 -0.873
[0.625,0.730] [-0.863,-0.804] [0.634,0.737] [-0.894,-0.848]

Table 3: Within-market correlations
The top part of each panel shows correlations between weekly changes in the log CDX spread (∆log(CDX)),

CDX volatility (∆βCDX
0 ), and CDX skewness (∆βCDX

1 ). The bottom part of each panel shows correlations

between weekly SPX returns (∆log(SPX)) and changes in the SPX volatility (∆βSPX
0 ) and SPX skewness

(∆βSPX
1 ). Correlations to the left (“Data”) are computed from the data. Correlations to the right (“Model”)

are computed from the fitted data using the benchmark specification of the model in Section 4. 95%

confidence intervals are given in brackets. The full sample period is February 29, 2012 to April 29, 2020

(426 weekly observations). The ex-Covid-19 sample period is February 29, 2012 to December 31, 2019 (409

weekly observations).
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Data Model

Panel A: Full sample

∆log(CDX),∆log(SPX) -0.802 -0.802
[-0.834,-0.766] [ -0.834,-0.766]

∆βCDX
0 ,∆βSPX

0 0.749 0.873
[ 0.704,0.788] [ 0.848,0.894 ]

∆βCDX
1 ,∆βSPX

1 -0.368 -0.380
[-0.448,-0.283] [ -0.459,-0.296]

Panel B: Ex-Covid-19 sample

∆log(CDX),∆log(SPX) -0.786 -0.786
[-0.821,-0.746] [ -0.821,-0.746]

∆βCDX
0 ,∆βSPX

0 0.679 0.930
[ 0.623,0.728] [ 0.916,0.942 ]

∆βCDX
1 ,∆βSPX

1 -0.372 -0.462
[-0.453,-0.286] [ -0.535,-0.382]

Table 4: Cross-market correlations
Each panel shows correlations between weekly SPX returns (∆log(SPX)) and log CDX spread changes

(∆log(CDX)), between weekly changes in SPX and CDX volatility (∆βSPX
0 and ∆βCDX

0 ), and between

weekly changes in SPX and CDX skewness (∆βSPX
1 and ∆βCDX

1 ). Correlations to the left (“Data”) are

computed from the data. Correlations to the right (“Model”) are computed from the fitted data using the

benchmark specification of the model in Section 4. 95% confidence intervals are given in brackets. The full

sample period is February 29, 2012 to April 29, 2020 (426 weekly observations). The ex-Covid-19 sample

period is February 29, 2012 to December 31, 2019 (409 weekly observations).
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A0 D1/A0 D2/A0 δ σ ρ λ m
√
v λi

Main 2893.8 0.0339 0.2279 0.0149 0.3405 0.0526 0.9531 -0.0875 0.0770 0.0032
(408.8) (0.0026) (0.0132) (0.0023) (0.0150) (0.0158) (0.8756) (0.0231) (0.0164) (0.0017)

α = 0.5 2899.2 0.0339 0.2274 0.0149 0.3096 0.0608 0.9676 -0.0864 0.0764 0.0026
(409.1) (0.0025) (0.0132) (0.0023) (0.0154) (0.0192) (0.8807) (0.0228) (0.0162) (0.0014)

λi = 0 2894.5 0.0339 0.2278 0.0149 0.3580 0.0436 0.9832 -0.0877 0.0767 0
(408.8) (0.0026) (0.0132) (0.0023) (0.0122) (0.0128) (0.8648) (0.0223) (0.0160)

λ = λi = 0 2894.6 0.0339 0.2278 0.0149 0.3756 0.0894 0 0 0 0
(408.8) (0.0026) (0.0132) (0.0023) (0.0112) (0.0324)

Table 5: Parameter estimates
For each model specification, the table reports the sample mean and sample standard deviation of the calibrated parameters. All specifications

have mi = −2 and vi = 0. The first, third, and fourth specification have α = 0.8. The sample period is February 29, 2012 to April 29, 2020

(426 weekly observations).
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SPX options CDX options 1Y CDX
ME RMSE ME RMSE err |err|

Main -0.003 0.012 -0.215 0.220 0 0
α = 0.5 -0.003 0.012 -0.186 0.193 0 0
λi = 0 -0.002 0.011 -0.185 0.191 -15.10 15.10
λ = λi = 0 -0.000 0.007 -0.218 0.220 -15.15 15.15

Table 6: Pricing errors
For each model specification and on each Wednesday in the sample, we compute the mean pricing error

(ME) and root mean squared pricing error (RMSE) for CDX options and SPX options. Pricing errors are

the differences between fitted and actual implied volatilities. The table reports sample means of the resulting

ME and RMSE time series. For the specifications λi = 0 and λ = λi = 0, the 1Y CDX is not fitted perfectly,

and the table reports sample means of the pricing error (difference between fitted and actual quoted spread)

and absolute pricing error. For the specification λ = λi = 0, the MEs and RMSEs are computed for ATM

options only. The sample period is February 29, 2012 to April 29, 2020 (426 weekly observations).
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CDX options SPX options CDX vs. SPX options
M1 M2 M3 EW M1 M2 M3 EW M1 M2 M3 EW

Panel A: Full sample
Mean 0.122 0.154 0.189 0.155 0.052 0.073 0.069 0.064 0.035 0.041 0.060 0.045
t-stat 3.125 3.842 4.742 4.208 1.514 2.052 1.919 1.880 1.865 2.153 3.167 2.623
Std.dev. 0.100 0.100 0.100 0.089 0.100 0.100 0.100 0.098 0.057 0.057 0.057 0.052
SR 1.217 1.539 1.888 1.744 0.515 0.726 0.692 0.659 0.613 0.710 1.051 0.877
Skewness -2.051 -2.378 -1.493 -2.219 -2.497 -2.277 -2.101 -2.285 -0.236 0.069 0.205 0.142
Kurtosis 14.167 19.322 19.149 17.586 17.593 16.775 15.177 16.125 9.008 10.395 12.045 9.772

Panel B: Ex-Covid-19 sample
Mean 0.157 0.206 0.238 0.200 0.081 0.119 0.125 0.108 0.038 0.043 0.057 0.046
t-stat 4.105 5.344 6.276 5.757 2.418 3.481 3.635 3.269 1.932 2.163 2.815 2.539
Std.dev. 0.100 0.100 0.100 0.087 0.100 0.100 0.100 0.098 0.059 0.059 0.059 0.053
SR 1.568 2.055 2.383 2.291 0.811 1.187 1.248 1.106 0.647 0.731 0.963 0.868
Skewness -1.802 -1.781 -1.122 -1.717 -2.598 -2.285 -1.980 -2.314 -0.327 0.020 0.175 0.072
Kurtosis 12.718 14.466 19.333 14.476 19.176 18.696 15.770 17.950 9.399 10.810 12.372 10.226

Table 7: Summary statistics of trading strategies
In each market and for each option maturity category, the strategy sells closest-to-ATM straddles each trading day with
a holding period of one day. We assume that the strategy requires an initial amount of capital proportional to the
option premium, and we adjust the proportionality factor to achieve a 10% unconditional annualized volatility of realized
excess returns for each option maturity. “EW” denotes an equally weighted portfolio of the three option maturities.
“CDX vs. SPX options” denotes a short-long strategy that allocates 50% of funds to selling CDX straddles and 50% to
buying SPX straddles. Means, standard deviations, and Sharpe ratios (“SR”) are annualized. t-statistics are corrected for
heteroscedasticity and serial correlation up to four lags using the approach of Newey and West (1987). The full sample
consists of 1881 daily returns between February 28, 2012 and April 30, 2020. The ex-Covid-19 sample consists of 1801
daily returns between February 28, 2012 and December 31, 2019.
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Panel D: CDX options
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Figure 1: Trading activity for CDX and CDX options
Panels A and B show the average daily trading volume for CDX and CDX options. Panels C and D show

the average number of trades per day for CDX and CDX options. Daily market activity reports from the

GFI SEF are used to compute the average amount by which the actual notionals of capped trades on the

GFI SEF exceed the reported notionals. This is done separately for CDX and CDX options (see Footnote 18

for details). The estimated true volume in Panels A and B is obtained by adding the average amount to the

reported notionals for all capped trades. The frequency of observations is monthly. The sample period is

December 31, 2012 to April 30, 2020 (88 observations).

49



moneyness, m moneyness, m

CDX SPX

-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.2

0.4

0.6

0.8

1

1.2

Figure 2: CDX and SPX implied volatility smiles
The figure shows weekly (Wednesday) two-month implied volatility smiles for CDX and SPX. CDX data

is displayed in the left panel and SPX data is displayed in the right panel. Moneyness is defined as m =

log(K/F (τ))/(σ
√
τ), where K is the strike, F (τ) is the forward (front-end-protected) spread in case of CDX

options and the forward price in case of SPX options), σ is the at-the-money implied volatility, and τ is the

maturity. Sample period is from February 29, 2012 until April 29, 2020 (426 observations).
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Figure 3: Summary of CDX and SPX options markets
The top left (right) panel shows time series of the CDX spread (SPX level). The middle left (right) panel

shows time series of the at-the-money CDX (SPX) implied volatility proxied by β0. The bottom left (right)

panel shows time series of the skewness of the CDX (SPX) implied volatility smile proxied by β1. Weekly

data from February 29, 2012 until April 29, 2020 (426 observations).
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Figure 4: Within- and cross-market interactions
The scatterplots along the diagonal show the cross-market interactions: Weekly log CDX spread changes

(∆log(CDX)) vs. SPX returns (∆log(SPX)) in Panel A; weekly CDX volatility changes (∆βCDX
0 ) vs. SPX

volatility changes (∆βSPX
0 ) in Panel E; and weekly CDX skewness changes (∆βCDX

1 ) vs. SPX skewness

changes (∆βSPX
1 ) in Panel I. Scatterplots below the diagonal show the CDX-market interactions: Weekly

CDX volatility changes vs. log CDX spread changes in Panel D; weekly CDX skewness changes vs. log

CDX spread changes in Panel G; and weekly CDX skewness changes vs. CDX volatility changes in Panel H.

Scatterplots above the diagonal show the SPX-market interactions: Weekly SPX volatility changes vs. SPX

returns in Panel B; weekly SPX skewness changes vs. SPX returns in Panel C; and weekly SPX skewness

changes vs. SPX volatility changes in Panel F. We only display observations that fall within the 0.5th and

99.5th percentile of the univariate distributions. The red (yellow) lines show the fits of linear regressions

applied to the data (fitted data using the benchmark specification of the model in Section 4). The sample

period is February 29, 2012 to April 29, 2020 (426 weekly observations).
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Figure 5: In-sample fit to CDX and SPX implied volatility smiles
The figure shows actual and fitted two-month implied volatility smiles for CDX and SPX on December 31,

2019. CDX data is displayed in the left panel and SPX data is displayed in the right panel. Moneyness

is defined as m = log(K/F (τ))/(σ
√
τ), where K is the strike, F (τ) is the forward (front-end-protected)

spread in case of CDX options and the forward price in case of SPX options), σ is the at-the-money implied

volatility, and τ is the option maturity. Crosses show data. The red lines show the implied volatility curves

in the pure-diffusion version of the model. The blue lines show the curves when adding systematic jumps.
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Figure 6: Fit to SPX and CDX implied volatility smiles on last Wednesday in sample
First row shows the fit to 1M, 2M, and 3M SPX implied volatility smiles on April 29, 2020. Second row

shows the fit to 1M, 2M, and 3M CDX implied volatility smiles.
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Figure 7: Time series of CDX option pricing errors
The left (right) panel shows the time series of the difference (relative difference) between βCDX

0 inferred from

the data and the fitted data. Weekly data from February 29, 2012 until April 29, 2020 (426 observations).
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Panel B: SPX leverage
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Figure 8: Distributions of leverage and ratings across index constituents
Panels A and B show the distribution of firm-quarter leverage observations for the constituents of the CDX

and SPX, respectively, between the first quarter of 2012 and the first quarter of 2020. Leverage is defined

as book value of debt over the sum of book value of debt and market value of equity. Panels C and D show

the distribution of firm-quarter rating observations for the constituents of the CDX and SPX, respectively,

between the first quarter of 2012 and the third quarter of 2017.
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Panel C: CDX systematic asset volatility
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Panel D: SPX systematic asset volatility
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Figure 9: Distributions of asset volatility across index constituents
Panels A and B (C and D) show the distribution of firm-quarter total (systematic) asset return volatility

for the constituents of the CDX and SPX, respectively. Asset returns are computed using daily data from

January 3, 2012 until December 31, 2019.
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Figure 10: Range of economic states spanned by options
The figure shows Amin−Afwd

Afwd and Amax−Afwd

Afwd for CDX and SPX options. Afwd is the forward value of the

common factor. For CDX options, Amin solves UT0
(Amin) = Kmax and Amax solves UT0

(Amax) = Kmin.

For SPX options, Amin solves ST0
(Amin) = Kmin and Amax solves ST0

(Amax) = Kmax. The sample period

is February 29, 2012 to April 29, 2020 (426 weekly observations).
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Figure 11: Fit to CDX options for stochastic alpha model
For each model specification (constant bankruptcy costs with α = 0.8 and stochastic bankruptcy costs with

expected α = 0.8) and on each Wednesday in the sample, we compute the mean error for ATM CDX options,

where the error is the difference between fitted and actual implied volatilities. The left panel shows the

resulting time series. The right panel shows the three-month conditional standard deviation of bankruptcy

costs in the model where costs are stochastic. The sample period is February 29, 2012 to April 29, 2020 (426

weekly observations).
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Figure 12: Cumulative performance of trading strategies
The figure shows the evolution of one dollar invested in each of the EW strategies at the beginning of the

sample (see Table 7 for details on the trading strategies). The left panel shows the performance of selling

CDX and SPX straddles outright. The right panel shows the performance of the short-long strategy that

allocates 50% of funds to selling CDX straddles and 50% to buying SPX straddles. On those trading days

where options returns on unavailable, we invest at the risk-free rate. The sample period is from February

24, 2012 to April 30, 2020 (2042 daily observations).
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IA.1 CDX spreads and implied volatilities

This section explains how to convert upfront amounts to spreads and option prices to spread

implied volatilities.

IA.1.1 CDX spread

Consider a CDX contract with N = 125 equally-weighted constituents, maturity T , and

premium paid continuously at a rate of C. To lighten notation, we assume that the initial

notional is one. The fraction of index constituents that have not defaulted at time t (which

corresponds to the outstanding notional) is then given by

f(t) =
1

N

N∑

i=1

1{τi>t} ,

where τi is the default time of firm i. Similarly, the cumulative default losses between index

inception and time t is given by

L(t) =
1

N

N∑

i=1

ℓi1{τi≤t},

where ℓi is the default loss of firm i.

The time-t value of the contract from the perspective of the buyer of protection is

V (t, T ) = V Prot(t, T )− C ×A(t, T ),

where V Prot(t, T ) is the value of the protection leg given by

V Prot(t, T ) = Et

[∫ T

t

e−
∫ u

t
r(s)dsdL(u)

]
,
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and A(t, T ) is the risky annuity value given by

A(t, T ) = Et

[∫ T

t

e−
∫ u
t

r(s)dsf(u)du

]
.

Although CDX contracts are traded in terms of an upfront amount and a fixed coupon,

they are typically quoted in terms of a spread, which is the size of the coupon such that the

upfront amount is zero. When converting between upfront amount and spread, the market

standard is to assume i) that index constituents are homogenous (i.e., identical in terms of

default intensity and default loss), ii) a constant default intensity λ, iii) a loss-given-default

of (1 − R) with a recovery rate of R = 40%, and iv) that interest rates and defaults are

independent.1 With these assumptions, we have

V
Prot

(t, T ) = λ(1− R)f(t)

∫ T

t

P (t, u)e−λ(u−t)du

and

A(t, T ) = f(t)

∫ T

t

P (t, u)e−λ(u−t)du.

For a given V (t, T ), λ is first calibrated so that

V (t, T ) = V
Prot

(t, T )− C ×A(t, T ) = (λ(1− R)− C)A(t, T ),

and the spread is then given by

Spr(t, T ) = λ(1− R).

Alternatively, CDX contracts can be quoted in terms of points upfront (PUF) which is the

1These are the assumptions behind the so-called the ISDA Standard Model. In the following, overlined
quantities are calculated under these assumptions.
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upfront amount per unit of outstanding notional. In our case, this is given by

U(t, T ) =
1

f(t)
V (t, T ).

IA.1.2 Forward CDX spread

Consider a CDX call option bought at time 0, with option expiry at time T0, CDX maturity

at time T , and strike in PUF terms of KU . The option payoff is

(
V (T0, T ) + (L(T0)− L(0))− f(0)KU

)+
.

Exercise will cost f(0)KU . In return, the option-holder enters into the version of the CDX

contract that prevails at time T0 (which has a value of V (T0, T )) and receives the realized

default losses during the life of the option (which has a value of L(T0) − L(0)). The latter

feature is called front-end protection (FEP).

Equivalently, we can write the option payoff as

(
V FEP (T0, T )− f(0)KU

)+
, (IA1)

where V FEP (T0, T ) is the value of a front-end protected CDX contract for which the protec-

tion leg incorporates the default losses between times 0 and T0.

At time 0 ≤ t < T0, the value of this forward-starting CDX contract is

V FEP (t;T0, T ) = V Prot,FEP (t;T0, T )− C ×A(t;T0, T ),

where

V Prot,FEP (t;T0, T ) = Et

[∫ T

T0

e−
∫ u
t

r(s)dsdL(u)

]
+ Et

[
e−

∫ T0
t r(s)ds(L(T0)− L(0))

]
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and

A(t;T0, T ) = Et

[∫ T

T0

e−
∫ u
t

r(s)dsf(u)du

]
.

To express this value as a spread, we use the same assumptions as above so that

V
Prot,FEP

(t;T0, T ) = λ(1−R)f(t)

∫ T

T0

P (t, u)e−λ(u−t)du+(1−R)P (t, T0)
(
f(0)− f(t)e−λ(T0−t)

)

and

A(t;T0, T ) = f(t)

∫ T

T0

P (t, u)e−λ(u−t)du.

For a given V FEP (t;T0, T ) (obtained via put-call parity, see Section IA.2 in the Internet

Appendix for details), λ is first calibrated so that

V FEP (t;T0, T ) = V
Prot,FEP

(t;T0, T )− C ×A(t;T0, T ),

and the front-end protected forward spread is then given by

Spr
FEP

(t;T0, T ) =
V

Prot,FEP
(t;T0, T )

A(t;T0, T )
. (IA2)

IA.1.3 Spread implied volatilities

For the purpose of expressing option prices as implied volatilities, we write the option payoff

(IA1) in spread terms as

((
Spr

FEP
(T0, T )− C

)
A(T0, T )− f(0)KU

)+
=
(
Spr

FEP
(T0, T )−KSpr

)+
A(T0, T ),

where

KSpr =
f(0)KU

A(T0, T )
+ C.
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is the strike in spread terms. KSpr is itself stochastic and to get a strike known at 0 ≤ t < T0

we replace A(T0, T ) with its time-t forward value, 1
P (t,T0)

A(t;T0, T ), to get

KSpr ≈ f(0)KUP (t, T0)

A(t;T0, T )
+ C. (IA3)

This is the equation we will use to convert between strikes in upfront terms and spread

terms.2

The CDX call option price is given by

C(t;T0, T,K) = Et

[
e−

∫ T0
t r(s)ds

(
Spr

FEP
(T0, T )−KSpr

)+
A(T0, T )

]

= A(t;T0, T )Ẽt

[(
Spr

FEP
(T0, T )−KSpr

)+]
,

where Ẽt[·] denotes expectation taken with respect to the annuity measure that hasA(t;T0, T )

as numeraire.3 The forward spread (IA2) is a martingale under the annuity measure and—

assuming that it follows a driftless geometric Brownian motion—we get a Black (1976)-type

option price formula. This allows us to express option prices as log-normal spread implied

volatilities.4

IA.2 Markit credit option data

This section describes Markit’s credit option data and the cleaning and data processing

procedures we employ.

2Clearly, the conversion is exact for KU = 0.
3A technical issue arises if all the index constituents were to default prior to option expiry; see, e.g., Morini
and Brigo (2011). However, the risk of this is negligible given realistic spreads and short option maturities.

4Pedersen (2003) presents an alternative model that can be used to back out log-normal spread implied
volatilities. That model must be solved numerically, but avoids the strike approximation (IA3). As shown
by White (2014), the two models generate very similar implied volatilities.
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IA.2.1 Data description

As part of its credit option data, Markit records pricing information for European options on

the CDX North American Investment Grade (hereafter, CDX) index. Each record uniquely

identifies the CDX option contracts it refers to by specifying the underlying CDX contract

as well as the strike price and maturity of the options.5 The underlying CDX contract is

identified by the index’s series and version numbers and the contract tenor, i.e., the time to

maturity with which the contract was initially launched. The option maturity is identified by

the month and the year in which the option expires. The option strike is not given directly

in terms of the points upfront (PUF) used for settlement, see (IA1). Instead, the strike is

given in terms of a spread. At option maturity, this spread is converted to PUF using the

ISDA Standard Model along with the prevailing discount curve.6 Because of interest rate

uncertainty, the strike in terms of PUF is, strictly speaking, not known before option expiry.

However, interest rate uncertainty is second-order in our context; therefore, at any point in

time prior to option expiry, we convert the strike from spread to PUF by assuming that the

discount curve at expiry coincides with the prevailing forward curve.

The pricing information consists of bid and offer composite quotes and the corresponding

quote mid-points. Quotes are relative to a so-called reference level because CDX options are

conventionally traded with “with delta”, i.e., together with a delta hedge in the underlying

CDX contract. The quoted spread at which the delta hedge will be executed is called the

reference level. The amount that will be executed is a percentage of the option’s notional

amount and specified via a quoted delta.7 Both the reference level and the delta are con-

5Records contain pricing information for payer and receiver options with the same strike price and maturity.
6The zero curve used by the ISDA Standard Model is constructed from LIBOR money market rates (for
maturities up to one year) and swap rates (for longer maturities). Specifically, it uses 1M, 2M, 3M, 6M, and
1Y USD LIBOR rates (before June 3, 2013 the 9M rate was used as well) and annual USD LIBOR swap rates
from the 2Y maturity onwards (with quarterly floating leg payments and semi-annual fixed leg payments).
For details, see the interest rate curve specifications on the homepage of the ISDA CDS Standard Model.

7The quoted delta actually is the percentage of the option’s notional that will be executed for hedging purposes
and therefore it is not necessarily equal to the option’s delta. In particular, it is positive for both payer and
receiver options.

6

http://www.cdsmodel.com/cdsmodel/assets/cds-model/docs/Interest%20Rate%20Curve%20Specification%20-%20All%20Currencies%20(Updated%20May%202013).pdf


ventionally quoted along with the option’s bid and offer prices. The composite quotes are

averages over the most recent quotes that market-making credit derivatives dealers contribute

for a given reference level prior to 5:30 p.m. New York time. Both the reference level and

averages of the quoted payer and receiver deltas are recorded in addition to the composite

quotes.

The pricing information also contains the number of dealers who contribute quotes to

the calculation of the composite and the number of unique quotes that dealers contributed

throughout the trading day. In this context unique means that the quote count does not

increase if a dealer repeatedly contributes the same quote for a given reference level.

Markit made some changes to the reporting format of the credit option data since they

initially offered the data. Specifically, data coverage expanded to options for which Markit

does not observe dealer quotes on a given date and instead uses a proprietary pricing model

to determine option prices. These records are flagged as “estimated” in the data and we

disregard them entirely. We only use “observed” records that are based on actual dealer

quotes and collected in the same way as described above.8

IA.2.2 Data cleaning

The raw data comprise 301,673 records for CDX options. We remove 150 duplicate records.

Where necessary, we determine the option expiry date as the third Wednesday of the month

that corresponds to the expiry-month-expiry-year tuple specified in the raw data, and we

remove one record with quote date after the determined expiry date. We also remove three

records with negative bid-ask spreads and 73 records with quote dates that do not fall on a

8There are minor changes to the reporting format such as expiry dates being recorded instead of the month and
year in which the option expires. The records also provide additional information that was not available in
the original reporting format such as front-end protected forward prices and spreads. We prefer to determine
front-end protected forward spreads ourselves (see next section) to have a consistent set of data throughout.
Our data comprises of records in the original reporting format for the period up to and including September
11, 2017. Thereafter, all records are in the new reporting format.

7



weekday. Finally, we remove 176 records that do not specify the strike price of the options.

IA.2.3 Data processing

The remaining 301,270 records are grouped into 22,296 option strips. Each strip of options

is characterized by the underlying CDX contract, the options’ expiry date, and the reference

level at which the options are quoted on a given day.9 Formally, on a given day and for a

given underlying CDX contract, expiry date, and reference level, a strip comprises of a set of

strikes, ΣC = {KC,1, KC,2, . . . , KC,m}, at which payer options are quoted and a set of strikes,

ΣP = {KP,1, KP,2, . . . , KP,n}, at which receiver options are quoted.

To compute the spread implied volatilities of the options in a strip, we need the value of

the underlying forward-starting front-end protected CDX contract. This value is not directly

observable. However, it can be inferred via put-call parity. Specifically, it is backed out from

that part of the strip’s strike grid on which both payer and receiver options are quoted, which

is denoted by Σ = ΣC ∩ ΣP . If Σ = ∅, there is no strike at which both payer and receiver

options are quoted and we discard the option strip, which is the case for three strips. On

the other hand, if Σ 6= ∅, there is at least one strike at which payer and receiver options are

quoted and we proceed as follows.

Let C(t;T0, T,K
U) and P (t;T0, T,K

U) denote the time-tmid-quotes of payer and receiver

options, respectively, with expiry at T0 and PUF strike KU on the current CDX version.

Then, put-call parity asserts that

C(t;T0, T,K
U)− P (t;T0, T,K

U) = V FEP (t;T0, T )−D(t, T0)f(t)K
U ,

9Often, there are several reference levels for the same option expiry. In this case, we take that reference level
whose strip length is longest (i.e., the one with the largest number of strikes). Should that not result in a
unique match then we consider the number of quotes (we select the reference level with the largest number
of quotes), the number of quoting dealers (again selecting the reference level that is quoted by the largest
number of dealers), and the average spread across the options (selecting the reference level that is quoted
with the tightest spread).
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where D(t, T0) is the discount factor for date T0, and V FEP (t;T0, T ) is the time-t value of

the T0-starting front-end protected CDX contract. Therefore, V FEP can be inferred as the

constant term in the following linear regression across all strikes in Σ:

C(t;T0, T,K
U
n )− P (t;T0, T,K

U
n ) = α + βD(t, T0)f(t)K

U
n + ǫn, KU

n ∈ Σ. (IA4)

If N = |Σ| > 1, we estimate the regression in Equation (IA4) by least-squares and remove

13 strips for which R2 < 98.5%. For the remaining strips, we re-estimate the regression in

Equation (IA4) imposing the restriction β = −1, in which case the least-square estimate of

V FEP is given by

V̂ FEP =
1

N

N∑

n=1

{
C(t;T0, T,K

U
n )− P (t;T0, T,K

U
n ) +D(t, T0)f(t)K

U
n

}
.

Then, we proceed to compute the corresponding front-end protected forward spread (as

described in Section IA.1.2) and the spread implied volatilities for all the options in the strip

(as described in Section IA.1.3).

Finally, we drop all records for options on off-the-run index series, leaving us with 282,861

records for 20,794 option strips.

IA.3 Details on option quotes

Figure IA1 shows time series of the CDX option maturities (in calendar days) that are quoted.

The time series are color-coded according to the option expiry grid (recall that options expire

on the third Wednesday of each month), so that the blue line at the bottom of the figure

shows the first maturity on the expiry grid (i.e., the options that expire on the first third

Wednesday following the observation date), the red line above the blue line shows the second

maturity on the expiry grid, etc. The time series are broken whenever there are no option

9



quotes for a given maturity.

Clearly, the range of quoted maturities increases over the sample period. This is consistent

with the growing trading volume in CDX options (Figure 1).

The left panels in Figure IA2 show time series of the M1, M2, and M3 CDX option

maturities (in calendar days). The right panels in Figure IA2 show time series of the maturity

difference (in calendar days) between the M1, M2, and M3 CDX options and the maturity-

matched SPX options.

The left (right) panels in Figure IA3 show time series of the range of moneyness spanned

by CDX (SPX) options.

The left (right) panels in Figure IA4 show time series of the relative bid-ask spreads of

at-the-money CDX (SPX) options. Unfortunately, there is a period in 2017 and 2018, when

bid and ask prices are missing from the Markit data.

IA.4 Additional cross-market correlations

In the paper, we focus on three key cross-market correlations. Table IA.1 complements

Table 4 in the paper by showing the remaining six cross-market correlations. Among these,

the highest correlation is between CDX spread changes and SPX volatility changes (0.710).

Figure IA6 illustrates all nine cross-market interactions for the full sample.10

IA.5 Understanding the pure-diffusion model credit skew

In the paper (Figure 5) we show that the implied credit skew has a negative slope in case of

the pure-diffusion version of the model. To understand this result, we first look at the model-

implied instantaneous forward CDX spread volatility. Next, we prove analytically that the

slope of the credit (and equity) skew is negative in the special case where i) the underlying

10Note that the scatterplots along the diagonal are identical to those in Figure 4 in the paper.
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model is the classic Merton (1974) model, ii) the CDS is paid in full-upfront (i.e., with no

periodic coupon payments), and iii) the credit implied volatility is expressed in full-upfront

(rather than spread) terms.

IA.5.1 The instantaneous forward CDX spread volatility skew

We first compute the instantaneous volatility of the forward CDX spread, when its value

equals the different option strikes.11 The left panel in Figure IA7 displays both the CDX

implied volatility curve (the solid red line) and the instantaneous volatility curve (the dashed

red line). The instantaneous volatility curve is downward sloping; in other words, the cor-

relation between the level of CDX spread and its instantaneous volatility is negative. This

negative correlation explains the negative slope of the implied volatility curve.12

IA.5.2 Credit and equity option skews in the diffusion-based Merton model

We now prove analytically that the classic diffusion-based Merton (1974) model generates a

negative implied volatility skew for both credit and equity options.

Recall that in this model the equity value equals the price of a European call option

written on the underlying asset value At with strike equal to the outstanding debt notional

D and maturity T . Let’s denote this price by C(At, t). It follows from risk-neutral pricing

and Itô’s lemma that

dC

C
= rdt+ σC(At, t)dZt,

where σC(A, t) =
CAAσ

C
and σ is the volatility of the underlying asset value. Now, as is well-

11For instance, the most OTM put (call) option has a moneyness of m = −0.99 (m = 3.03), which corresponds
to a strike of 39 bps (75 bps). For the forward CDX spread to equal this value, the asset value must be
A0 = 4487.9 (A0 = 3610.8) at which level the instantaneous volatility of the forward CDX spread is 0.481
(0.407).

12The implied volatility curve is less steep than the instantaneous volatility curve because implied variance is
approximately equal to the integral of the instantaneous variance along the path of the underlying that joins
its initial value to the strike price at expiration, see Gatheral (2006).
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known, the sign of the option implied volatility skew will be determined by the sign of the

correlation between the underlying and its variance. Specifically, the implied volatility skew

will be negatively (positively) sloped if the covariance of dC
C

and dσ2
C is negative (positive).

In the present model, we have

ρC =
1

dt
Cov

(
dC

C
, dσ2

C

)
= 2σ2

C

∂σC

∂A
σA.

Thus, we have

sign(ρC) = sign

(
∂σC

∂A

)
= sign

(
∂CAA

C

∂A

)
= −sign

(
∂ C

CAA

∂A

)
.

Now, by homogeneity we have C = ACA +DCD. It follows that

σ

σC

=
C

ACA

= 1 +
DCD

ACA

= 1− De−rTN(d2)

AN(d1)
.

We can then compute

∂ C
ACA

∂A
=

De−rT

A2N(d1)2σ
√
T

(
n(d1)N(d2) +N(d1)N(d2)σ

√
T −N(d1)n(d2))

)
.

The sign of the expression is that of the function

fs(x) = n(x+ s)N(x) +N(x + s)N(x)s−N(x+ s)n(x), (IA5)

for the positive constant s = σ
√
T and for x = d2. Note in particular that limx→−∞ fs(x) = 0,

limx→+∞ fs(x) = s > 0. Thus, if we can show that f ′
s(x) > 0 this suffices to establish that

fs(x) > 0 ∀x. We find that f ′
s(x) = N(x + s)n(x)(x + s) − N(x)n(x + s)x = n(x)n(x +

s)(N(x+s)(x+s)
n(x+s)

− N(x)x
n(x)

). Since g(x) = N(x)x
n(x)

is an increasing function, it follows that f ′
s(x) >

12



0.13

We have established:

Lemma 1. ∂σC

∂A
< 0 and thus ρC < 0.

It follows that when A drops (because of a negative shock dZ < 0), the value of the call

(i.e., the equity value) decreases, but its variance increases generating the negative equity

implied volatility skew.

Turning to the credit side, we assume for analytical purposes that the CDS is paid in

full-upfront (so that the underlying of a CDS option is the full-upfront CDS price) and we

study the slope of the implied volatility skew expressed in full-upfront terms.14 In the Merton

setting, the CDS value equals the price of a European put option on At with strike D and

maturity T . Let’s denote this price by P (At, t). Its risk-neutral dynamics are

dP

P
= rdt+ σP (At, t)dZt,

where σP (A, t) =
PAAσ

P
. Similar to before, the credit-option implied volatility skew will be

negatively (positively) sloped if the covariance of dP
P

and dσ2
P is negative (positive). In the

present model, we have

ρP =
1

dt
Cov

(
dP

P
, dσ2

P

)
= 2σ2

P

∂σP

∂A
σA.

Thus,

sign(ρP ) = sign

(
∂σP

∂A

)
= sign

(
∂ PAA

P

∂A

)
= −sign

(
∂ P

PAA

∂A

)
.

13It can be shown that g′(x) =
∫

x
−∞

(x−y)2n(y)dy

n(x) > 0.
14Instead, and to be consistent with the market convention, in the paper we present implied credit-spread
volatilities, where the upfront-to-spread conversion is done using a standard reduced-form model as described
in Section IA.1 of the Internet Appendix.

13



Now, by homogeneity we have P = APA +DPD. It follows that

σ

σP

=
P

APA

= 1 +
DPD

APA

= 1− De−rTN(−d2)

AN(−d1)

We can then compute

∂ P
APA

∂A
=

De−rT

A2N(−d1)2σ
√
T

(
N(−d1)N(−d2)σ

√
T + n(−d2)N(−d1)− n(−d1)N(−d2)

)
.

We see that the sign of the right-hand side is that of the function fs(x) defined in equa-

tion (IA5) above with x = −d1. It follows then immediately from our previous analysis

that:

Lemma 2. ∂σP

∂A
< 0 and thus ρP < 0.

Thus, when A drops (because of a negative shock dZ < 0), and since σP < 0, the value

the put (i.e., the CDS value) increases, but its variance decreases generating a negative credit

implied volatility skew.

Combining both lemmas, we see that the classic Merton diffusion framework generates

the same (negative) slope for the equity and credit implied volatility skew, contrary to what

is observed in the data.

IA.6 Computation of leverage

We distinguish between short-term debt maturing within one year and long-term debt ma-

turing later than one year. For each index constituent, we compute “short-term leverage” as

book value of short-term debt relative to the sum of market value of equity and book value

of total debt and “long-term leverage” as book value of long-term debt relative to the sum

of market value of equity and book value of total debt. We use quarterly Compustat data,

14



where the book values of short-term and long-term debt are items DLCQ and DLTTQ,

respectively, and market value of equity equals shares outstanding (item CSHOQ) times

share price (item PRCCQ). Leverage ratios for CDX and SPX are obtained by averaging the

leverage ratios of the index constituents, and the final leverage ratios used in calibration are

obtained by averaging the leverage ratios across the two indexes.

Figure 8 in the paper shows the distributions of leverage across index constituents. Fig-

ure IA8 goes one step further and shows the distributions of short- and long-term leverage

across index constituents. Panels A and B show the distribution of firm-quarter short-term

leverage observations for the CDX and SPX constituents, respectively. Panels C and D do

the same for long-term leverage. On average, short- and long-term leverage is similar across

the two indexes. The mean (median) short-term leverage is 0.033 and 0.034 (0.021 and 0.015)

for the CDX and SPX, respectively, while the mean (median) long-term leverage is 0.244

and 0.204 (0.220 and 0.175) for the CDX and SPX, respectively.

IA.7 Details on calibration

We partition the parameters into two sets,

Θ1 = {A0, D1, D2, δ, σ, λi}

and

Θ2 = {ρ, λ,m, v},

where Θ2 determines the amount of systematic risk in the asset process. The optimization

procedure has two “layers”. In the outer layer, we search for the Θ2 that minimizes the sum

of squared pricing errors for SPX options. In the inner layer, for each Θ2-guess, we solve

for the Θ1 that achieves an exact match to the 1Y and 5Y CDX, the SPX level, the SPX

15



dividend yield, and the index leverage ratios.

Ideally, we would want to express option pricing errors in terms of implied volatilities.

However, this is not practical because computing implied volatilities from prices requires a

numerical inversion for each option, which adds an extra layer of complexity to the calibration

procedure. Instead, we fit to option prices scaled by their option vegas computed from the

Black-type formula described in Section IA.1.3. This converts option pricing errors in terms

of prices into option pricing errors in terms of implied volatilities via a linear approximation.

Finally, implementing the pricing formulas in our model involve a couple of numerical

choices: The summations in the pricing formulas are truncated at the 0.9999 percentile of the

associated Poisson distributions. The bivariate and trivariate normal cumulative distribution

functions are computed using the bvnl.m and tvnls.m Matlab functions developed by Alan

Genz.

IA.8 Option pricing with heterogeneity in leverage

In the paper, we assume that firms are ex-ante identical. In this section, we investigate the

effect of heterogeneity in leverage on the relative valuation of CDX and SPX options. Figure

IA9 shows time series of the mean, standard deviation, and skewness of the distribution

of long-term leverage for SPX constituents. Consistent with Panel D in Figure IA8, the

leverage distribution is consistently positively skewed. The time-series averages of the mean,

standard deviation, and skewness are 0.204, 0.143, and 0.887, respectively. We focus on the

impact of this “average” degree of heterogeneity.

IA.8.1 Homogeneous benchmark

As benchmark, we use the homogeneous model. We assume a flat term structure with

r = 0.02, and set T0 = 0.25, T1 = 1, and T2 = 5. We set parameter values for A0, δ, σ, ρ,
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λ, m, v, and λi to those reported in Table 5. We search for D1 and D2 so that we match

the time-series average of SPX leverage ratios in short-term (lev1 = 0.034) and long-term

(lev2 = 0.204). The resulting values are D1 = 101.0 and D2 = 605.5. We compute SPX

(2259.0), index dividend yield (0.019), and CDX upfront values for 1Y (-85.7 bps) and 5Y

(-195.8 bps),15 We also compute SPX option prices for a wide range of strikes (m between

-3 and 3).

IA.8.2 Heterogenous model

Next, we consider a model that allows for heterogeneity in leverage. Specifically, along the

lines of Bai, Goldstein, and Yang (2019b), we assume that there are two types of firms, L

and H , that are ex-ante identical except in terms of their long-term leverage, levL2 and levH2

(type L being the low-leverage firms). A fraction w of index constituents are of type L, while

the remaining fraction 1− w are of type H .

As a first step, we search for w, levL2 , and levH2 so that we match the time-series averages

of the first three moments of the distribution of long-term leverage for SPX constituents.

The solution is w = 0.703, levL2 = 0.111, and levH2 = 0.424. The two types of firms are

assumed to have the same short-term leverage so that levL1 = levH1 = 0.034.

Next, we calibrate the parameters of the heterogeneous model to the values implied by

the homogeneous model, only now we have four debt parameters, DL
1 , D

L
2 , D

H
1 , and DH

2 ,

15The corresponding 1Y and 5Y CDX spreads are 13.3 bps and 57.9 bps, respectively.
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and four leverage targets

levL1 =
DL

1

Si,L
0 +DL

1 +DL
2

levL2 =
DL

2

Si,L
0 +DL

1 +DL
2

levH1 =
DH

1

Si,H
0 +DH

1 +DH
2

levH2 =
DH

2

Si,H
0 +DH

1 +DH
2

.

Specifically, we match exactly the 1Y and 5Y CDX, the SPX level, the SPX dividend yield,

and the leverage ratios, and minimize the sum of squared pricing errors for SPX options.

This way we ensure that the two models (the homogenous and the heterogenous) match the

same set of statistics.

Note that equity and CDS values for type L and H firms are obtained with the pricing

formulas in the paper, and that the SPX and CDX values are given by

S0(A0) = wSi,L
0 (A0) + (1− w)Si,H

0 (A0)

U0(A0) = wU i,L
0 (A0) + (1− w)U i,H

0 (A0).

The pricing formula for SPX options is given below.

The resulting parameters for the heterogeneous model are A0 = 2895.5, δ = 0.0149,

σ = 0.2771, ρ = 0.0807, λ = 0.9426, m = −0.0892,
√
v = 0.0779, λi = 0.0040, DL

1 = 99.8,

DL
2 = 325.5, DH

1 = 105.6, and DH
2 = 1314.4. The model has an almost perfect fit to SPX

options (RMSE of 0.000037).16

Finally, we compare prices for CDX options (the pricing formula for CDX options in the

heterogeneous model is given below). The heterogeneous model generates somewhat lower

16The equity value and 1Y and 5Y CDS spreads for the low-leverage (high-leverage) firm are 2504.5 (1678.9),
6.2 (30.2) bps, and 10.5 (177.7) bps, respectively.
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CDX option prices than the benchmark model across the entire moneyness spectrum. In

terms of implied volatilities, the difference between the two models increases with moneyness.

This is evident from Figure IA10 which shows the implied volatility smiles for the two models.

For the ATM CDX option, the implied volatility drops from 29.7% in the benchmarket model

to 28.2% in the heterogenous model. The upshot is that the sort of heterogeneity in leverage

that we observe in the data tends to exacerbate the valuation puzzle.

IA.8.3 Pricing formulas for index options

The index upfront amount, conditional on the common factor AT0
, is given by

UT0
(AT0

) = wE[U i,L
T0

|AT0
] + (1− w)E[U i,H

T0
|AT0

]

= we−r(T1−T0)
(
(1 + C1)E[1{Ai

T1
<ΦL} |AT0

]− α

DL
1 +DL

2

E[Ai
T1
1{Ai

T1
<ΦL} |AT0

]
)

+ we−r(T2−T0)
(
E[1{Ai

T1
≥ΦL,Ai

T2
<DL

2 }
|AT0

]− α

DL
2

E[Ai
T2
1{Ai

T1
≥ΦL,Ai

T2
<DL

2 }
|AT0

]
)

+ (1− w)e−r(T1−T0)
(
(1 + C1)E[1{Ai

T1
<ΦH} |AT0

]− α

DH
1 +DH

2

E[Ai
T1
1{Ai

T1
<ΦH} |AT0

]
)

+ (1− w)e−r(T2−T0)
(
E[1{Ai

T1
≥ΦH,Ai

T2
<DH

2 }
|AT0

]− α

DH
2

E[Ai
T2
1{Ai

T1
≥ΦH,Ai

T2
<DH

2 }
|AT0

]
)

− C0 − C1e
−r(T1−T0).
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Therefore, the time-0 value of a CDX call option with strike K and expiration at T0 is

CCDX
0 = e−rT0E0[max(UT0

(AT0
)−K, 0)]

= we−rT1

(
(1 + C1)E0[1{AT0

<A,Ai
T1

<ΦL} ]−
α

DL
1 +DL

2

E0[A
i
T1
1{AT0

<A,Ai
T1

<ΦL} ]
)

+ we−rT2

(
E0[1{AT0

<A,Ai
T1

≥ΦL,Ai
T2

<DL
2 }

]− α

DL
2

E0[A
i
T2
1{AT0

<A,Ai
T1

≥ΦL,Ai
T2

<DL
2 }

]
)

+ (1− w)e−rT1

(
(1 + C1)E0[1{AT0

<A,Ai
T1

<ΦH} ]−
α

DH
1 +DH

2

E0[A
i
T1
1{AT0

<A,Ai
T1

<ΦH} ]
)

+ (1− w)e−rT2

(
E0[1{AT0

<A,Ai
T1

≥ΦH,Ai
T2

<DH
2 }

]− α

DH
2

E0[A
i
T2
1{AT0

<A,Ai
T1

≥ΦH,Ai
T2

<DH
2 }

]
)

− e−rT0K̃E0[1{AT0
<A} ],

where

K̃ = K + C0 + C1e
−r(T1−T0)

and A is the unique value such that UT0
(A) = K and we use the fact that UT (A) is decreasing

in A.

The value of the SPX, conditional on the common factor AT0
, is given by

ST0
(AT0

) = wE[Si,L
T0

|AT0
] + (1− w)E[Si,H

T0
|AT0

]

= AT0
− we−r(T1−T0)

(
DL

1E[1{Ai
T1

≥ΦL} |AT0
] + E[Ai

T1
1{Ai

T1
<ΦL} |AT0

]
)

− we−r(T2−T0)
(
DL

2E[1{Ai
T1

≥ΦL,Ai
T2

≥DL
2 }

|AT0
] + E[Ai

T2
1{Ai

T1
≥ΦL,Ai

T2
<DL

2 }
} |AT0

]
)

− (1− w)e−r(T1−T0)
(
DH

1 E[1{Ai
T1

≥ΦH} |AT0
] + E[Ai

T1
1{Ai

T1
<ΦH} |AT0

]
)

− (1− w)e−r(T2−T0)
(
DH

2 E[1{Ai
T1

≥ΦH,Ai
T2

≥DH
2 }

|AT0
] + E[Ai

T2
1{Ai

T1
≥ΦH,Ai

T2
<DH

2 }
} |AT0

]
)
.
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Therefore, the time-0 value of an SPX call option with strike K and expiration at T0 is

CSPX
0 = e−rT0E0[max(ST0

(AT0
)−K, 0)]

= e−rT0E0[AT0
1{AT0

≥A} ]− we−rT1

(
DL

1E0[1{AT0
≥A,Ai

T1
≥ΦL} ] + E0[A

i
T1
1{AT0

≥A,Ai
T1

<ΦL} ]
)

− we−rT2

(
DL

2E0[1{AT0
≥A,Ai

T1
≥ΦL,Ai

T2
≥DL

2 }
] + E0[A

i
T2
1{AT0

≥A,Ai
T1

≥ΦL,Ai
T2

<DL
2 }

]
)

− (1− w)e−rT1

(
DH

1 E0[1{AT0
≥A,Ai

T1
≥ΦH} ] + E0[A

i
T1
1{AT0

≥A,Ai
T1

<ΦH} ]
)

− (1− w)e−rT2

(
DH

2 E0[1{AT0
≥A,Ai

T1
≥ΦH,Ai

T2
≥DH

2 }
] + E0[A

i
T2
1{AT0

≥A,Ai
T1

≥ΦH,Ai
T2

<DH
2 }

]
)

− e−rT0KE0[1{AT0
≥A} ],

where A is the unique value such that ST0
(A) = K and we use the fact that ST (A) is

increasing in A.

IA.9 Option pricing with finite number of index constituents

In the paper, we obtain analytical solutions to index options by letting the number of in-

dex constituents go to infinity. In actuality, indexes are composed of a finite number of

constituents (125 in case of CDX and 500 in case of SPX). In this section, we conduct a sim-

ulation exercise to verify that the number of index constituents is sufficiently high that index

option prices are well approximated by our analytical formulas. We use the same parameter

values as in Section IA.8.1. We consider 3-month equity index put options that are ATM

(strike equal to the forward SPX value, K = 2259.6) and roughly one standard deviation

OTM (K = 2071.0). The analytical option prices are 67.72 and 23.36, respectively. We also

consider 3-month credit index call options that are ATM (strike equal to the upfront value

of the 5Y FEP forward-starting CDX, K = −171.8 bps) and roughly one standard deviation

OTM (K = −124.7 bps). The analytical option prices are 15.25 and 6.12 bps, respectively.
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Next, we use simulation to price the options for a finite number, N , of index constituents.

We use M = 50, 000 paths. The estimated equity index put option price is given by

e−rT0
1

M

M∑

j=1

max

(
K − 1

N

N∑

j=1

Si
T0
(Ai,j

T0
), 0

)
,

and the credit index call option price is given by

e−rT0
1

M

M∑

j=1

max

(
1

N

N∑

j=1

U i
T0
(Ai,j

T0
)−K, 0

)
.

Figure IA11 shows index option prices as a function of N .17 The left panels show CDX

options, and the right panels shows SPX options. The top panels show ATM options, and

the bottom panels show OTM options. The grey areas indicate 95% confidence intervals.

The blue lines show the analytical option prices for N → ∞.

Consider first the equity index options with N = 500. The ATM option has a simulated

price of 67.69 with a 95% confidence interval of [66.51,68.87], and the OTM option has a

simulated price of 23.15 with a 95% confidence interval of [22.43,23.87]. For both options,

the analytical price is within the 95% confidence interval of the finite-N option price.

Consider next the credit index options with N = 125. The ATM option has a simulated

price of 16.80 bps with a 95% confidence interval of [16.46,17.13] bps, and the OTM option

has a simulated price of 6.60 bps with a 95% confidence interval of [6.37,6.83] bps. For both

options, the analytical price lies outside of the 95% confidence interval of the finite-N option

price. The finite-N option prices are 10.1% and 7.9%, respectively, higher than the analytical

option prices.

The upshot is that while the analytical SPX option prices are very good approximations

to the N = 500 index option prices, the analytical CDX option prices are downward-biased

17N = 1 corresponds to an option on a single-name CDS or single stock.
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compared to the N = 125 index option prices.18 However, the magnitudes of the biases are

small relative to the size of the mispricing that we document in the paper.

Figure IA12 compares index distributions for finite N (estimated from the simulated data

using a normal kernel function with optimal bandwidth) with the limiting distributions for

N → ∞ (obtained using the analytical option price formulas together with the Breeden-

Litzenberger Theorem). The left panels show CDX options, and the right panels shows SPX

options. The top panels show results for N = 125, and the bottom panels show results for

N = 500. Visually, the distributions are very similar, with the distributions for finite N

having only slightly more dispersion than the limiting distribution.

IA.10 Computation of asset return volatility

IA.10.1 Data

We build our sample for computing asset volatilities of CDX and SPX constituents from

several databases. Daily stock price data come from the Center for Research in Secu-

rity Prices’ (CRSP’s) US stock database. Quarterly company fundamentals come from the

CRSP/Compustat Merged database. One- and five-year CDS spreads and expected recov-

ery rates come from Markit. Finally, corporate actions and reference entity data come from

Markit’s Reference Entity Database (RED).

We use six-digit Committee on Uniform Security Identification Procedures (CUSIP) codes

to identify companies that are present in both the CRSP and Markit data. Specifically,

we associate with each RED code the CRSP permanent company identifier whose six-digit

CUSIP—that is, the first six characters of CRSP’s historic eight-character issue identifier

18Note that for N = 500, the analytical CDX option prices are within the 95% confidence intervals of the finite-
N option prices. In this case, the ATM option has a simulated price of 15.54 bps with a 95% confidence
interval of [15.21,15,86] bps, and the OTM option has a simulated price of 6.14 bps with a 95% confidence
interval of [5.91,6.36] bps.
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(the NCUSIP item)—corresponds to the six-digit CUSIP available in Markit RED data.19

Then, we incorporate corporate actions among reference entities, exclusively focusing on

events in which a RED code was changed because the reference entity was renamed. We do

not incorporate other corporate action types, such as mergers and acquisitions, directly; i.e.,

via the corresponding events in the RED database. Instead, we incorporate them indirectly

whenever there are two RED codes with the same CRSP permanent company identifier that

have not yet been linked. This ensures that mergers are consistent across the two data sets

in that the surviving company is identical in both CRSP and Markit data.

Finally, we use CRSP’s permanent company identifier to obtain company fundamentals

from the CRSP/Compustat Merged database. In case of companies with multiple share

classes, we drop the share class that is less liquid in terms of trading volume over the 2012–

2019 sample period.

IA.10.2 Asset returns

We compute asset returns as the leverage-weighted average of equity and synthetic short-

and long-term bond returns; that is,

rA
i

t = (1− levi1 − levi2)r
Si

t + levi1r
Bi

1

t + levi2r
Bi

2

t ,

where rS
i

t denotes firm i’s daily equity return from CRSP for date t (CRSP’s RET item),

and r
Bi

1

t and r
Bi

2

t denote synthetic short- and long-term bond returns based on firm i’s one-

and five-year Markit CDS spreads, respectively, for the same period.20 The leverage ratios,

levi1 and levi2, are computed as described in Section IA.6.

The synthetic bond return computation is based on no-arbitrage arguments. As shown

in Duffie (1999), selling CDS protection on firm i and buying a risk-free floating rate note

19The RED code is the primary identifier of a credit default swap’s reference entity.
20CRSP’s return computation takes into account all distributions to shareholders, such as dividend payments.
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produces the same cash flow stream as a floating rate note with matching payment dates

issued by the same firm. In the same spirit, the cash flow stream of a fixed-rate bullet

bond approximately equals selling CDS protection, buying a risk-free floating rate note, and

swapping the risk-free floating rate payments to a fixed rate via an interest rate swap (IRS).

In this case, the excess return on the fixed-rate bullet bond can be decomposed into

r
Bi

j

t = r
CDSi

j

t + r
IRSj

t ,

where r
CDSi

j

t denotes firm i’s one- (if j = 1) or five-year (if j = 2) CDS return and r
IRSj

t

denotes the return on a one- (if j = 1) or five-year (if j = 2) IRS.

Specifically, the CDS return over the period from date s to date t is

r
CDSi

j

t = −
(
C i

j,t − C i
j,s

)
PVBP t

(
C i

j,t, R
i
t

)
+ C i

j,s

t− s

360
,

where C i
j,t denotes firm i’s one- (if j = 1) or five-year (if j = 2) par spread on date t and Ri

t

denotes firm i’s expected recovery rate.21 The risky present value of a basis point for a given

par spread and recovery rate, PVBP t(C,R), is obtained via the ISDA CDS Standard Model

and using locked-in LIBOR rates from Markit.22 For additional details concerning the CDS

return computation, see Junge and Trolle (2015).

21If there is a credit event between dates s and t, then the return is

r
Bi

j

t = −
(
1−Ri

τi

)
+ Ci

j,s

ττi − s

360
,

where Ri
τ is the realized recovery rate and τi is the credit event date. There are no credit events among CDX

and SPX constituents during our sample period.
22The ISDA CDS Standard Model is the market standard for marking to market CDSs based on a term
structure of par spreads. The simplified version of the model that we use to compute the risky present values
actually assumes that the term structure of risk free rates is piecewise constant, and that both the default
intensity and the recovery rate are constant. Given a par spread and recovery rate, the model finds that
value of the default intensity that makes a par CDS’s present value equal to zero.
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Similarly, the IRS return is

r
IRSj

t = −(Sj,t − Sj,s)PVBP t

where Sj,t denotes the date-t fixed rate on a one- (if j = 1) or five-year (if j = 2) IRS

referencing three-month LIBOR. The present value of a basis point, PVBP t, is computed

using zero-rates bootstrapped from deposit and swap rates. Specifically, the short-end of the

interest rate curve is composed of rates on LIBOR deposit with less than three months to

maturity, and the remainder of the curve comprises swap rates.23

We compute asset returns both for companies for which we can establish a CRSP/Markit

link and for zero-leverage companies for which we cannot expect to find Markit data. In total,

we can compute asset returns for 135 companies that were a CDX constituent at some point

between 2012 and 2019 and for 430 companies that were at some point a SPX constituent.

Panels A of Figure IA13 shows that for roughly 50% of the CDX constituents for which we

can compute asset returns, we are able to do so throughout the sample period. For SPX

constituents that share is a little lower at roughly 40%, see Panel B of Figure IA13. The

varying number of observations for the remaining companies is due to both missing data and

index inclusions/exclusions. In our analysis, we disregard a few companies with very few

observations by requiring that we have at least one month of data (i.e., 21 observations) for

each quarter for which we produce firm-quarter statistics. This leaves a total of 135 and 425

companies in case of CDX and SPX, respectively.

Panel A of Figures IA14 and IA15 show the distributions of asset returns for CDX and

SPX constituents, respectively. Panels B, C, and D of the two figures show the distributions

of the asset return’s components; namely, the equity return (Panel B), and the synthetic

23The swaps are standard USD-denominated fixed for floating swaps. Floating-leg payments occur quarterly
and reference three-month LIBOR, and fixed-leg payments occur semi-annually. The swaps have maturities
of at least one year.
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one- (Panel C) and five-year (Panel D) bond returns.

IA.10.3 Systematic asset volatility

We decompose asset returns into systematic and idiosyncratic components by assuming that

the return of the common systematic component has the same structure as the returns of

the individual companies; that is,

rAt = (1− lev1 − lev2)r
S
t + lev1r

B1

t + lev2r
B2

t ,

where rSt denotes the return on aggregate equity, r
Bi

1

t and r
Bi

2

t denote returns on aggregate

short- and long-term debt, and lev1 and lev2 denote aggregate short- and long-term leverage

ratios.

In this case, a one-factor linear model

rA
i

t = αi + βir
A
t + ǫA

i

t

becomes

rA
i

t = αi + βS
i r

S
t + βB1

i rB1

t + βB2

i rB2

t + ǫA
i

t , (IA6)

where βS
i = βi(1 − lev1 − lev2), β

B1

i = βilev1, and βB2

i = βilev2. We use Equation (IA6) to

estimate the systematic component of asset returns.24 Specifically, rSt is given by the daily

SPX return from CRSP (CRSP’s SPRTRN item), and rB1

t and rB2

t are computed from CDX

and IRS returns as

r
Bj

t = r
CDXj

t + r
IRSj

t ,

24We estimate Equation (IA6) for each firm and quarter, i.e., we do not impose the cross-equation restrictions
implied by the explicit expressions for βS

i , β
B1

i , and βB1

i .
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where the CDX return is given by

r
CDXj

t = −(Uj,t − Uj,s) + C
t− s

360
− (Lt − Ls),

using the notation from Section IA.1 in the Internet Appendix.

While total asset volatility is estimated as the annualized standard deviation of rA
i

t ,

systematic asset volatility is estimated as the annualized standard deviation of

r̂A
i

t = α̂i + β̂S
i r

S
t + β̂B1

i rB1

t + β̂B2

i rB2

t , (IA7)

where α̂i, β̂
S
i , β̂

B1

i , and β̂B2

i denote OLS estimates of αi, β
S
i , β

B1

i , and βB2

i , respectively.

IA.11 Option pricing with stochastic bankruptcy costs

Here we show how to extend the model to allow for stochastic bankruptcy costs that follow

a continuous Markov chain αt =
∑n

i=1 αi1{st=i}
, where st ∈ {1, 2, . . . , n} follows a contin-

uous time Markov chain with constant transition intensities qij and where αi are constant

bankruptcy cost parameters. We assume the jumps in st are independent of all other sources

of risk. Further, we define the transition matrix Q with off-diagonal element Qij = qij ∀i 6= j

and with diagonal element Qii = −∑j 6=i qij . Note that equity prices and thus SPX and SPX

option prices are not affected by bankruptcy costs. Thus they are unchanged. Instead, the

bankruptcy cost process enters the bond and CDS payoffs, and thus also affects CDX and

CDX option values. Further, since αt is independent of At and Ai
t, the bond and CDS prices

will depend only on the conditional expectation of αt, α(s0, t) = E[αt | s0]. Instead, the CDX

option will also depend on the volatility of αt, which has the potential to increase CDX

option prices relative to those implied by SPX options.
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IA.11.1 CDS value

Consider a CDS contract from T0 to T2 with unit notional and with a coupon rate of C.

Following the same approach as in the main text, the upfront amount of the CDS contract

is

U i
2(T0) = Proti2(T0)− C ×Ai

2(T0)

= e−r(T1−T0)ET0
[(1− αT1

Ai
T1

D1 +D2
+ C1)1{Ai

T1
<Φ} ]

+ e−r(T2−T0)ET0
[(1− αT2

Ai
T2

D2

)1{Ai
T1

≥Φ,Ai
T2

<D2} ]− C0 − C1e
−r(T1−T0),

where C0, C1 are as defined in the main text.

Since the Markov Chain process is independent of Ai, A we can rewrite this as:

U i
2(T0) = e−r(T1−T0)ET0

[(1− α(sT0
, T1 − T0)A

i
T1

D1 +D2
+ C1)1{Ai

T1
<Φ} ]

+ e−r(T2−T0)ET0
[(1− α(sT0

, T2 − T0)A
i
T2

D2
)1{Ai

T1
≥Φ,Ai

T2
<D2} ]− C0 − C1e

−r(T1−T0),

where we define the expected bankruptcy cost τ ≥ 0:

α(s, τ) = E[ατ | s0 = s] (IA8)

=
n∑

i=1

αiP [sτ = i | s0 = s] (IA9)

Define the (n, n) matrix P (t) with element pij(t) = P [st = j | s0 = i]. Clearly, it satisfies

for j 6= i:

pij(t+ dt) =
∑

k 6=j

pik(t)qkjdt+ pij(t)(1−
∑

k 6=j

qjkdt)
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from which it follows that

pij(t)
′ =
∑

k

pik(t)Qkj

In matrix form:

P (t)′ = P (t)Q

which admits the matrix solution P (t) = exp(tQ), where exp(M) =
∑

k
1
k!
Mk.

We can also compute the conditional variance of the bankruptcy cost as

V [ατ | s0 = s] = E[α2
τ | s0 = s]− α(s, τ)2,

where

E[α2
τ | s0 = s] =

n∑

i=1

α2
i psi(τ).

IA.11.2 CDX value

We value the CDX at time T0. Like in the main text we will use the LHP model to derive

the expression. The new feature is that there are now two common factors AT0
, sT0

. The

index upfront amount, conditional on the common factors AT0
, sT0

, is given by:

UT0
(AT0

, sT0
) = lim

N→∞

1

N

N∑

i=1

U i
2(T0)

= E[U i
2(T0)|AT0

, sT0
]

= e−r(T1−T0)
(
(1 + C1)E[1{Ai

T1
<Φ} |AT0

]− α(sT0
, T1 − T0)

D1 +D2
E[Ai

T1
1{Ai

T1
<Φ} |AT0

]
)

+ e−r(T2−T0)
(
E[1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]− α(sT0
, T2 − T0)

D2
E[Ai

T2
1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]
)

− C0 − C1e
−r(T1−T0).
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IA.11.3 CDX options

The time-0 value of a CDX call option with strike K and expiration at T0 is:

CCDX
0 = e−rT0E0[max(UT0

(AT0
, sT0

)−K, 0)]

= e−rT0

n∑

i=1

P [sT0
= i | s0]E0[max(UT0

(AT0
, i)−K, 0)]

It remains to evaluate E0[max(UT0
(AT0

, i) −K, 0)] ∀i = 1, . . . , n. But this is similar to

the expression in the main text. Indeed:

e−rT0E0[max(UT0
(AT0

, i)−K, 0)]

= e−rT0E0

[(
e−r(T1−T0)

(
(1 + C1)E[1{Ai

T1
<Φ} |AT0

]− α(i, T1 − T0)

D1 +D2
E[Ai

T1
1{Ai

T1
<Φ} |AT0

]
)

+ e−r(T2−T0)
(
E[1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]− α(i, T2 − T0)

D2

E[Ai
T2
1{Ai

T1
≥Φ,Ai

T2
<D2} |AT0

]
))

1{AT0
<A}

]

− e−rT0K̃E0[1{AT0
<A} ]

= e−rT1

(
(1 + C1)E0[1{AT0

<A,Ai
T1

<Φ} ]−
α(i, T1 − T0)

D1 +D2

E0[A
i
T1
1{AT0

<A,Ai
T1

<Φ} ]
)

+ e−rT2

(
E0[1{AT0

<A,Ai
T1

≥Φ,Ai
T2

<D2} ]−
α(i, T2 − T0)

D2
E0[A

i
T2
1{AT0

<A,Ai
T1

≥Φ,Ai
T2

<D2} ]
)

− e−rT0K̃E0[1{AT0
<A} ],

where

K̃ = K + C0 + C1e
−r(T1−T0)

and A is the unique value such that UT0
(A, i) = K and we use the fact that UT (A, i) is

decreasing in A. Note in particular, that the endogenous threshold A depends on the state

i and so will be different across different bankruptcy cost states.
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IA.12 Details on trading strategies

As described in the paper, in addition to holding the option premium in a margin account,

we assume that an initial amount of capital is required when selling options. Let Pt denote

the straddle price at time t and Xt the required capital. Assuming that capital in the margin

account earns the risk-free rate, the excess return from selling the straddle is

Re
t+1 =

−Pt+1 + Pt(1 + rt)

Xt

.

In the paper, we assume that Xt is proportional to the option premium, Xt = cPt, and adjust

c to achieve a 10% unconditional annualized volatility of realized excess returns within each

option maturity.

As a robustness check, here we explore an alternative assumption that Xt is constant over

time, and again adjust the required amount to achieve a 10% unconditional annualized excess

return volatility. Table IA.3 and Figure IA17 are the counterparts to Table 7 and Figure 12

in the paper. Under the alternative assumption about capital, selling CDX volatility is even

more attractive relative to selling SPX volatility. For instance, for the full sample, trading

the EW portfolios against each other generates an annualized Sharpe ratio of 1.143 (vs. 0.877

with the original assumption about capital).

Note, however, that the return distributions are much more leptokurtic. This is also

evident from Figure IA18, which shows daily excess returns for each of the EW strategies

assuming constant capital (in the top row) and proportional capital (in the bottom row).

Clearly, constant capital leads to extreme return volatility during the Covid-19 crisis, which

is not the case with proportional capital.
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Data Model

Panel A: Full sample

∆log(CDX),∆βSPX
0 0.710 0.754

[0.659,0.754] [0.709,0.792]
∆log(CDX),∆βSPX

1 -0.685 -0.708
[-0.733,-0.631] [-0.752,-0.657]

∆βCDX
0 ,∆log(SPX) -0.701 -0.634

[-0.746,-0.649] [-0.687,-0.573]
∆βCDX

0 ,∆βSPX
1 -0.637 -0.759

[-0.690,-0.577] [-0.796,-0.715]
∆βCDX

1 ,∆log(SPX) -0.285 -0.211
[-0.370,-0.196] [-0.300,-0.118]

∆βCDX
1 ,∆βSPX

0 0.286 0.320
[0.196,0.371 ] [0.231,0.402]

Panel B: Ex-Covid-19 sample

∆log(CDX),∆βSPX
0 0.698 0.674

[0.644,0.744] [0.618,0.724]
∆log(CDX),∆βSPX

1 -0.613 -0.600
[-0.670,-0.549] [-0.658,-0.534]

∆βCDX
0 ,∆log(SPX) -0.621 -0.724

[-0.677,-0.558] [-0.767,-0.675]
∆βCDX

0 ,∆βSPX
1 -0.585 -0.831

[-0.645,-0.517] [-0.859,-0.798]
∆βCDX

1 ,∆log(SPX) -0.307 -0.165
[-0.393,-0.217] [-0.258,-0.069]

∆βCDX
1 ,∆βSPX

0 0.346 0.315
[0.258,0.429] [0.225,0.400]

Table IA.1: Remaining cross-market correlations
Each panel shows the six cross-market correlations that were not reported in Table 4 of the paper. Correla-

tions to the left (“Data”) are computed from the data. Correlations to the right (“Model”) are computed from

the fitted data using the benchmark specification of the model in Section 4. 95% confidence intervals are

given in brackets. The full sample period is February 29, 2012 to April 29, 2020 (426 weekly observations).

The ex-Covid-19 sample period is February 29, 2012 to December 31, 2019 (409 weekly observations).
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CDX options SPX options
Diffusion X X X X X X

Systematic jumps X X X X

Idiosyncratic jumps X X

A0 4351.6 4351.5 4350.8 4351.6 4351.5 4350.9
D1/A0 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373
D2/A0 0.2450 0.2450 0.2450 0.2450 0.2450 0.2450
δ 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129
σ 0.3318 0.3116 0.2978 0.3318 0.3181 0.3080
ρ 0.2101 0.1298 0.1683 0.0628 0.0243 0.0260
λ 0.5044 0.5396 1.4668 1.4625
m -0.1259 -0.1279 -0.0567 -0.0567
v 0.0085 0.0097 0.0027 0.0027
λi 0.0013 0.0013
IV RMSE 0.1862 0.0128 0.0121 0.0531 0.0022 0.0022
1Y CDX (bps) 0.9 0.9 8.3 0.9 0.9 8.3

Table IA.2: Parameters, in-sample analysis
The table shows the calibrated parameters for the in-sample analysis in Section 4.6. All specifications have

mi = −2, vi = 0 and α = 0.8.

35



CDX options SPX options CDX vs. SPX options
M1 M2 M3 EW M1 M2 M3 EW M1 M2 M3 EW

Panel A: Full sample
Mean 0.104 0.115 0.154 0.124 0.008 0.012 0.007 0.009 0.048 0.051 0.073 0.058
t-stat 2.676 2.782 3.698 3.187 0.223 0.335 0.203 0.258 2.579 2.900 4.175 3.412
Std.dev. 0.100 0.100 0.100 0.093 0.100 0.100 0.100 0.098 0.055 0.054 0.055 0.050
SR 1.042 1.147 1.538 1.337 0.079 0.120 0.073 0.092 0.874 0.959 1.322 1.143
Skewness -5.265 -7.510 -6.063 -7.458 -4.116 -4.612 -4.286 -4.494 2.223 1.154 -0.280 1.742
Kurt 91.258 145.518 114.268 145.778 47.126 72.070 89.650 63.181 36.730 44.154 57.470 43.983

Panel B: Ex-Covid-19 sample
Mean 0.186 0.231 0.267 0.228 0.082 0.112 0.119 0.104 0.052 0.060 0.074 0.062
t-stat 4.907 5.827 6.728 6.347 2.584 3.498 3.653 3.314 2.579 2.895 3.569 3.285
Std.dev. 0.100 0.100 0.100 0.087 0.100 0.100 0.100 0.099 0.060 0.060 0.059 0.054
SR 1.860 2.312 2.665 2.605 0.816 1.120 1.186 1.055 0.872 0.998 1.246 1.146
Skewness -1.138 -2.223 -1.206 -1.901 -2.618 -2.408 -2.256 -2.460 -0.047 -0.183 0.194 0.065
Kurt 18.228 20.375 18.449 16.692 26.397 26.304 24.886 26.227 13.047 12.375 11.958 11.874

Table IA.3: Summary statistics of trading strategies, constant required capital
In each market and for each option maturity category, the strategy sells closest-to-ATM straddles each trading day with a
holding period of one day. We assume that the strategy requires an initial amount of capital, which we assume is constant
over time and which we adjust to achieve a 10% unconditional annualized volatility of realized excess returns for each
option maturity. “EW” denotes an equally weighted portfolio of the three option maturities. “CDX vs. SPX options”
denotes a short-long strategy then allocates 50% of funds to selling CDX straddles and 50% to buying SPX straddles.
Means, standard deviations, and Sharpe ratios (“SR”) are annualized. t-statistics are corrected for heteroscedasticity and
serial correlation up to four lags using the approach of The full sample consists of 1881 daily returns between February 28,
2012 and April 30, 2020. The ex-Covid-19 sample consists of 1801 daily returns between February 28, 2012 and December
31, 2019.
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Figure IA1: Time series of quoted CDX option maturities
Option expiries are 3rd Wednesday of the month. Vertical dotted lines mark roll dates. Daily data from

February 24, 2012 until April 30, 2020.
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M3: CDX maturity

M2: CDX maturity

M1: SPX-CDX maturity

M3: SPX-CDX maturity
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M2: SPX-CDX maturity
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Figure IA2: Maturities of M1, M2, and M3 options
The left panels show CDX option maturities in calendar days. The right panels show the difference between

SPX and CDX option maturities in calendar days. Vertical dotted lines mark CDX roll dates. Daily data

from February 24, 2012 until April 30, 2020.
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Figure IA3: Moneyness-range of M1, M2, and M3 option
The left (right) panels show the range of moneyness spanned by CDX (SPX) options. Moneyness is defined

as m = log(K/F (τ))/(σ
√
τ), where K is the strike, F (τ) is the forward (the front-end-protected spread in

case of CDX options and the forward price in case of SPX options), σ is the at-the-money implied volatility,

and τ is the maturity. Vertical dotted lines mark CDX roll dates. Daily data from February 24, 2012 until

April 30, 2020.
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Figure IA4: Relative bid-ask spreads of M1, M2, and M3 at-the-money option
The left (right) panels show the relative bid-ask spreads of at-the-money CDX (SPX) options. Relative bid-

ask spreads are defined as
Pask

t −P bid
t

Pmid
t

. Vertical dotted lines mark CDX roll dates. Daily data from February

24, 2012 until April 30, 2020.
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Figure IA5: Summary of CDX and SPX options markets during Covid-19 crisis
The top left (right) panel shows time series of the CDX spread (SPX level). The middle left (right) panel

shows time series of the at-the-money CDX (SPX) implied volatility proxied by β0. The bottom left (right)

panel shows time series of the skewness of the CDX (SPX) implied volatility smile proxied by β1. The vertical

dotted lines mark the Wuhan lockdown on January 23, the Italy quarantine on February 22, the 50 bps rate

cut by the Federal Reserve on March 3, 2020, the 100 bps rate cut and credit market support by the Federal

Reserve on March 15, 2020, and the expansion of credit market support by Federal Reserve on March 23,

2020. Daily data from January 2, 2020 until April 30, 2020.
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Figure IA6: All cross-market interactions
The figure shows all nine cross-market correlations. We only display observations that fall within the 0.5th

and 99.5th percentile of the univariate distributions. The red (yellow) lines show the fits of linear regressions

applied to the data (fitted data using the benchmark specification of the model in Section 4). The sample

period is February 29, 2012 to April 29, 2020 (426 weekly observations).
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Figure IA7: Local and implied volatility smiles in the pure-diffusion version
The figure shows the local and implied volatility smiles for CDX and SPX on December 31, 2019. CDX

data is displayed in the left panel and SPX data is displayed in the right panel. Moneyness is defined as

m = log(K/F (τ))/(σ
√
τ ), where K is the strike, F (τ) is the forward (front-end-protected) spread in case of

CDX options and the forward price in case of SPX options), σ is the at-the-money implied volatility, and

τ is the option maturity. Crosses show data. The dashed red lines show the local volatility smiles in the

pure-diffusion version of the model. The solid red lines show the two-month implied volatility smiles.
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Figure IA8: Distributions of short- and long-term leverage across index constituents
Panels A and B (C and D) show the distribution of firm-quarter short-term (long-term) leverage observations

for the constituents of the CDX and SPX, respectively. Short-term (long-term) leverage is defined as book

value of short-term (long-term) debt relative to the sum of market value of equity and book value of total

debt. The sample is from first quarter of 2012 until first quarter of 2020.
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Figure IA9: Time series of moments of leverage distributions
The figure shows the time series of the mean, standard deviation, and skewness of the distribution of long-

term leverage for SPX constituents.
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Figure IA10: Implied volatility smiles with heterogeneity in leverage
The figure shows the implied volatility smiles for CDX options (left panel) and SPX options (right panel)

for the benchmark homogenous model (blue line) and the heterogeneous model (red line) fitted to the same

set of SPX options.
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Figure IA11: Option pricing with a finite number of index constituents
The left panels show CDX option prices (in basis points), and the right panels shows SPX option prices.

The top panels show ATM options, and the bottom panels show OTM options.
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Figure IA12: Index distributions
The index distributions for finite N are estimated from the simulated data using a normal kernel function

with optimal bandwidth. The limiting distributions for N → ∞ are obtained using the analytical option

price formulas together with the Breeden-Litzenberger Theorem. The left (right) panels show CDX (SPX)

distributions (SPX distributions are multiplied by 103). The top (bottom) panels show results for N = 125

(N = 500).
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Figure IA13: Cumulative distribution function of asset return observations
Panels A and B show the cumulative distribution function of asset return observations for companies that

were a CDX (Panel A) or SPX (Panel B) constituent at some point between 2012 and 2019. Daily data from

January 3, 2012 until December 31, 2019.
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Figure IA14: Return distributions CDX constituents
Panel A shows the density of the asset return distribution for CDX constituents, and Panels B–D show the

densities of the distributions of the asset return’s components. Panel B shows the density of the equity

return distribution, and Panels C and D show the density of the distributions of synthetic one- and five-year

bond returns, respectively. Daily data from January 3, 2012 until December 31, 2019.
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Figure IA15: Return distributions SPX constituents
Panel A shows the density of the asset return distribution for SPX constituents, and Panels B–D show the

densities of the distributions of the asset return’s components. Panel B shows the density of the equity

return distribution, and Panels C and D show the density of the distributions of synthetic one- and five-year

bond returns, respectively. Daily data from January 3, 2012 until December 31, 2019.
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Figure IA16: Risk-weighted assets for CVA risk across the 8 US G-SIBs
The figure shows the risk-weighted assets (RWAs) for counterparty valuation adjustment (CVA) risk across

the eight US global systemically important banks (G-SIBs). The data comes from the quarterly “Pillar 3

Regulatory Capital Disclosures”. The sample period is Q4 2015 and Q1 2020 (prior to Q4 2015 not all banks

reported RWAs specifically for CVA risk).
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Figure IA17: Cumulative performance of trading strategies, constant required capital
The figure shows shows the evolution of one dollar invested in each of the EW strategies at the beginning

of the sample (see Table IA.3 for details on the trading strategies). The left panel shows the performance of

selling CDX and SPX straddles outright. The right panel shows the performance of the short-long strategy

that allocates 50% of funds to selling CDX straddles and 50% to buying SPX straddles. On those trading

days where options returns on unavailable, we invest at the risk-free rate. The sample period is from February

24, 2012 to April 30, 2020 (2042 daily observations).
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Figure IA18: Daily excess returns
The figure shows daily excess returns for each of the EW strategies. “CDX-SPX” denotes the short-long

strategy that allocates 50% of funds to selling CDX straddles and 50% to buying SPX straddles. The top

row shows excess returns when the required amount of capital is constant over time. The bottom row shows

excess returns when the required amount of capital is proportional to the option premium. Each sample

consists of 1881 daily returns between February 28, 2012 and April 30, 2020.
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