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Abstract

Why are investors buying underperforming mutual funds? To address this problem,
we develop a principal-agent model based on a sequential game played by a representative
investor and a fund manager in an asymmetric information framework. The model shows
that investors’ perceptions of the fund market play the key role in the fund’s fee-setting
mechanism. The managers’ true ability to deliver performance is not relevant. Along with
a simple relation between fees and funds’ performance, empirical evidence suggests that
most U.S. domestic equity mutual funds have added high markups in recent years. For
these fees to be justified, we show that investors would have expected the fund managers
to be able to deliver an overall annual excess-return of around 3% over the S&P 500, net
of fees, irrespective of the investment style and of the risk level of the funds. Therefore,
we interpret these high markups as resulting from the investors’ optimism bias whose
root can be found in their lack of financial literacy as well as in funds’ marketing effort.
We demonstrate that investors’ over-optimism and their misperception about the fund
market drive them into buying underperforming mutual funds, which then allows mutual
fund managers to charge high markups.

JEL classification: G23, G11, D82.

Keywords: Mutual Fund Fees, Mutual Funds, Asymmetric Information, Principal-Agent
Relationships, Markup, Optimism Bias

∗The authors acknowledge helpful discussions and exchanges with conference participants at Midwest Fi-
nance Association conference, Eastern Finance Association conference and the conference of the Swiss Society
for Financial Market Research. All remaining errors are ours.

1



1 Introduction

The lack of performance of the mutual fund industry and the lack of investors’ reaction to
these poor performances is a widely reported phenomenon1. However, despite its apparent
underperformance, the total net assets managed by U.S. mutual funds has increased from 6.39
trillion dollars in 2002 to 12.02 trillion dollars in 2007, according to the Investment Company
Institute (2008). Why do investors keep buying these obviously underperforming investment
vehicles? At the same time, how can one explain the long-standing puzzle of high markups
in the mutual fund industry? These questions are even more crucial in recent years, given
the emergence of new investment vehicles such as low-cost index funds2 and exchange-traded
funds (ETFs). With growing competition and increasing disclosure and transparency in the
fund market, and given their relatively poor performance, one could expect that mutual funds
would reduce their fees, but a recent report by the U.S. Security and Exchange Commission
shows clearly that mutual fund total expense ratios (TER) have been overall on the rise since
the late 1970s (SEC 2001).

The present paper proposes a simple solution for these two related puzzles in terms of
a principal-agent model in an asymmetric information framework. Our model provides a
theoretical framework to account for the investors’ limited abilities and to test some of its
observable consequences. We find that the optimal fee level, determined by the fund managers
in their own interest, depends only on the information and preferences of the investor. Be-
cause investors have only partial information on the fund managers’ true abilities and limited
knowledge of the financial markets, they may hold a biased view of the fund’s true perfor-
mance. Fund managers can then take advantage of the investors’ optimism bias, attracting
their investment and charging them an additional premium significantly above the competitive
level of fund fees.

Our model assumes that the origin of the misperception of investors about the fund per-
formance is not due to their failure to update their priors but lies only in their limited
or misguided information3. Given this limitation, investors make rational decisions. This
assumption has the advantage of reducing the problem to a simple one-period set-up. In
contrast, taking into account the process of information updates would require a multi-period
model with learning.

In addition, our model suggests two alternative fee-setting mechanisms. First, when the
fund provides diversification benefits from the perspective of an investor’s global portfolio,
demand-insensitive investors have to pay higher fees to get access to this benefit. This scenario
has been described by Gil-Bazo and Ruiz-Verdu (2007). Second, when a leveraged fund does
not provide diversification benefits but actually adds additional risks to the investor’s global
portfolio, the fund manager will lower fund fees to attract more money inflow from less
performance-sensitive investors.

1See Palmiter and Taha (2008), Berk and Green (2004), Nanigian, Finke, and Waller (2008), and Glode
(2008).

2Some index funds track S&P 500 indices with an annual expenses of 10 basis point and has no load fees.
3The two following perspectives about the rationality of investors can not be distinguished within our

framework: either investors are rational but take their decisions based on limited information or they have
only bounded rationality.
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The existing literature attributes the investors’ puzzling investment behavior either to the
existence of redemption fees4, or to the performance of funds in bad economic times5. In
contrast, Berk and Green (2004) suggested that investor’s irrational behavior and informa-
tion asymmetry should play a significant role to explain the two puzzles mentioned above.
Whether fund fees are excessive and whether market competition truly works in the mutual
fund industry is a long-standing debate among academics. Several studies such as Coates
and Hubbard (2007) and Grinblatt, Ikheimo, and Keloharju (2008) argue that there is an
adequate level of competition in the mutual fund industry and fees in the fund market are
thus competitive. However, the result of our empirical study contradicts this view. More
specifically, we show that after accounting for the returns on funds, diversification benefits
and fees, most US domestic equity mutual funds, both actively and passively managed, have
added markups in the past years. In addition, these mutual funds demonstrate competitive
disadvantage to low-cost index funds or index ETFs. In this respect, our study provides ad-
ditional evidence to previous works (School 1982, Freeman 2007, Freeman and Brown 2001).
These studies found that mutual fund advisers charge significantly higher fees than free-market
prices would suggest. As a consequence, they call for more market competition and regula-
tion in the mutual fund industry. In an in-depth study, Palmiter and Taha (2008) discussed
fund investor profile studies released by the SEC. They argued that, due to the fact that
most investors are financially unsophisticated, the SEC’s current policy of imposing adequate
disclosure is not sufficient because it fails to account for investor’s own limitations, i.e. lack
of financial knowledge.

Previous works have identified investors’ optimism bias towards equities issued in their
domestic market6. In particular, academic research on mutual funds has focused on investor’s
lack of financial literacy. Barber, Odean, and Zheng (2005) and Choi, Laibson, and Madrian
(2008) provide empirical evidence that investors are more sensitive to salient fees such as
front-load fees. Surprisingly, investors appear to be unaware of the existence of mutual funds’
expense ratios. Capon, Fitzsimons, and Prince (1996) and Alexander, Jones, and Nigro (1998)
demonstrated in their respective studies that investors are not familiar with many basic facts
about mutual funds such as the level of fees they are paying to their funds. These empirical
findings of investor’s deviation from rationality are in line with our model’s emphasis on
investor’s limited financial knowledge of the mutual fund industry.

Investors’ optimism bias can be closely related to their lack of knowledge of the fund market,
leading them to choose sub-optimal benchmarks such as bank savings instead of low-cost index
funds or ETFs. Besides, investors’ optimism bias is probably influenced and reinforced by the
marketing practices of mutual funds, which promote the sale of fund shares. Since 1980, after
approval of the SEC Rule 12b-1, mutual funds have been allowed to charge marketing and
distribution fees to their investors by adopting a 12b-1 plan7. Khorana and Servaes (2004)
and Barber, Odean, and Zheng (2005) have identified a positive impact of 12b-1 fees on funds’

4See Alves and Mendes (2007) and Nanigian, Finke, and Waller (2008).
5See Glode (2008).
6This well-documented fact is called “equity home bias”. Investments tend to be too concentrated in the

home equities, failing to reap the benefit of international diversification. See French and Poterba (1991), Cooper
and Kaplanis (1994), Tesar and Werner (1995) and Strong and Xu (2003). Brennan and Cao (1997) attributed
this bias to asymmetric information between domestic and foreign investors.

7See Malhotra and McLeod (1997)
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money flows. Murray (1991) explains various marketing strategies in promoting fund sales.

Another important empirical fact about the mutual fund industry is the dispersion in fees
across various funds. Empirical evidence shows that funds with higher expense ratios deliver
lower before-fee returns, as demonstrated by Elton, Gruber, and Das (1993), Gruber (1996)
and Chevalier and Ellison (2002). Gil-Bazo and Ruiz-Verdu (2007) interpret this observation
as a selection bias: underperforming funds target the pool of investors who are least sensitive
to fund performance, while better performing funds charge lower fees to compete for and
to attract performance sensitive investors. Christoffersen and Musto (2002) studied money
market funds with a similar argument and showed that demand-curve variations explain fee
variations.

The construction of our model follows the literature on the theory of optimal contracts
between managers and investors, which considers a variety of factors and mechanisms to ex-
plain the fee structure of portfolio management services. For instance, Das and Sundaram
(2002) compared a symmetric fulcrum contract enforced by law8 with an asymmetric incentive
contract, using a model where good managers choose the appropriate contract structure to
signal their ability. First, they found that incentive fees usually lead to more risky portfolios.
Comparing incentive fees with fulcrum fees, they also determined that the former (respec-
tively later) provides increasing investor welfare under imperfect competition (respectively
under competitive market conditions). Stracca (2006) provides a good survey of the relevant
literature on this topic.

In this context, our model is based on the observation that the relationship between a
manager and a representative investor constitutes an example of the general principal-agent
problem. Following the seminal work of Ross (1973) and Holmstrom (1979), numerous studies
have applied the principal-agent model to various situations of economic exchange between
two parties. In a nutshell, an investor “hires” a mutual fund manager and the fee structure
of the mutual fund is the mechanism used to attempt to align their interest, under prevailing
conditions of incomplete and asymmetric information between them. In the language of the
principal-agent problem, the manager sells her service, presented as information gathering
ability and managerial efforts, to the investor in return for a compensation represented as
the management fees (Starks 1987, Golec 1992, Heinkel and Stoughton 1994). We assume
that managers with better information have full access to an investor’s private information,
whereas investors have no access to a manager’s private information.

We derive the demand function of the representative investor and the optimal level of man-
agement fees charged by the manager. The information on the manager’s skills is revealed to
the investor by the return history of the managed fund. For a specified level of management
fees, the demand function of the representative investor is determined by the composition of
her optimal portfolio. This portfolio is defined as a mixture of the mutual fund investment and
of other vehicles that she picks up herself. The fund manager uses her private knowledge of her
own management skills and the full understanding of the investor’s decision process to deter-
mine the optimal fee level, which maximizes her expected utility. Our approach generalizes in

8The “fulcrum” fee is a form of incentive fee specified for mutual funds by law, according to a 1970 amend-
ment to the Investment Company Act of 1940. A typical fulcrum fee must be centered around an index of
reference, with increases in fees for performance above that index matched by decreases in fees for performance
below the index.
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three directions the work of Golec (1992), who also studied a one-period principal-agent model
in which mutual fund managers trade their information-gathering abilities with investors: (ı)
we solve the principal-agent problem by fully considering the informational disadvantage of
the investor; (ıı) we focus our attention on the fixed-fee compensation scheme as it is the
most-used standard in the mutual fund industry; and (ııı) our treatment is not restricted to
the mean-variance utility function, even if we eventually show that it is often sufficient to
provide reasonable results.

We obtain two main theoretical results. Firstly, the fee-setting mechanism including the
fees at equilibrium is fully determined by the information available to the investor, while the
manager’s information is irrelevant. The investor’s information includes her choice of the
benchmark portfolio9 and her anticipation of the fund’s relative performance in terms of both
diversification benefits and returns, when compared to her benchmark. Secondly, we provide
a simple formula to analyze a fund’s risk-adjusted performance, when fees come into play.
In addition, our results do not require any restrictive assumptions on the form of the fund’s
return distribution and the investor’s utility function as long as it is an increasing and concave
function.

Then, we test whether the returns delivered by US equity mutual funds can justify their fees
in recent years, given the perspective offered by our model. For this, we use a data set of 3,875
U.S. domestic equity funds over the period from July 2003 to March 2007 from the CRSP
Survivor-Bias-Free US Mutual Fund database. The results show that most funds have charged
high markups to their investors. At the same time, we interpret the continued presence of
high markups as an indication of investors’ over-optimism about the funds’ future performance
when they make their investment decisions. The over-optimism of investors translates into
decisions made on the basis of limited or misguided information, and leads to investments
in underperforming mutual funds. Furthermore, we show that investor’s over-optimism can
be explained either by the fund’s marketing efforts or by the investor’s incorrect selection of
benchmarks, or by a combination of both, possibly due to the lack of sufficient investment
knowledge.

This paper is organized as follows. Section 2 describes the model, stressing its economic
underpinning. In section 3, we present our main results, with the characterization of the
equilibrium and its main properties. Section 4 presents the empirical framework and results.
Section 5 summarizes our conclusions.

2 The Model

2.1 General Set-up

Let us consider a fund manager and a representative investor who play a one period game.
Consistent with the literature on mutual fund fees (Herman 1963, Holmstrom 1979, Luo
2002, Freeman 2007), we focus on the situation in which the representative investor has no
bargaining power. This setup implies a competitive supply of capital to mutual funds, as

9The benchmark portfolio represents the investor’s standard choice of investment vehicles. This can be
ETFs or bank savings, depending on the investor’s financial knowledge and risk preference.
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suggested by Berk and Green (2004). This assumption is quite realistic, given the large
number of small investors and the relatively small number of mutual funds in today’s mutual
fund market.

The investor is a utility-maximizer with no bargaining power and incomplete information.
This approach is consistent with the fact that, except for index funds or ETFs, the whole
mutual funds market can be considered to be a monopoly (Chordia 1996). The investor
chooses the optimal amount of her money to invest in the managed fund, on the basis of its
perceived average return and risk profile as well as the management fees charged by the fund
manager. This latter is assumed to be a utility-maximizer too, privy of her own personal
information.

We consider exclusively a one period game between the fund manager and the representative
investor. This convenient simplification is not restrictive, because it actually reflects the reality
that most mutual fund investors buy for the long-term and redeem their shares infrequently.
This buy-and-hold strategy is encouraged by the policy of most funds, which apply penalties
for early redemption10. Although our model is one-period, this does not imply that the fund
is statically managed. We do not make any assumption about the underlying management
process, which can include any general dynamic strategy. This makes our model quite versatile
and relevant for both static and active mutual fund strategies.

The game unfolds as follows. At the beginning of the period, the fund manager decides on
the level of management fees as a percentage of her asset under management. The representa-
tive investor observes the proposed fee structure and builds up her portfolio accordingly. She
can purchase shares from the manager’s fund, which involves a cost specified by the manage-
ment fees. She can also buy shares from a “benchmark portfolio” which is accessible at zero
management cost. This benchmark asset can be the risk-free asset or any exchange-traded
fund11 (ETFs) that replicates a market index or a risk factor which is representative of the
asset class used by the manager.

The initial endowment of the investor is equal to one monetary unit. She invests ω in the
managed fund and the rest, 1− ω, in the benchmark portfolio. The benchmark portfolio can
be sold short12 but only long positions are allowed for the managed fund, so that ω ≥ 0. At
the end of the period, the manager extracts her fees and then redeems the remaining capital
to the investor.

Following the prevalent habit in the mutual fund industry, our set-up assumes a fixed-fee
compensation scheme for the mutual fund, i.e., the fee is a fixed percentage per period of the
net asset under management. This fee structure is to be contrasted with the incentive fee
that usually includes a proportional base fee plus a percentage of the return above a certain

10Alves and Mendes (2007) showed that back-end load fees do have an impact on investor’s redemption
activity. On average, the Investment Company Institute (2001) suggested a redemption rate of 15% for domestic
equity funds over the period from 1992 to 1999. Redemption rate is calculated as fund’s total outflows in a
given year as a percentage of starting assets.

11Static index ETFs have no annual expenses. There is only a commission as low as 5-20 basis points
when buying and selling the shares. Assuming 5 years holding period, this means 2-8 basis point per year.
Poterba and Shoven (2002) compares the S&P 500 SPDR trust, the largest ETF to the Vanguard Index 500
and concludes that they both offer similar returns to investors.

12Unlike index-funds, short-selling ETFs is possible.
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benchmark, which is the prevalent compensation scheme in the hedge fund industry. For the
mutual fund industry, Golec (1992) reported that, in 1985, only 27 out of 476 U.S. equity
funds used performance based compensation schemes. More recently, Elton, Gruber, and
Blake (2003) documented that, in 1999, only 108 out of 6716 U.S. mutual funds specializing
in bonds and stocks used incentive fees. This justifies our focus on the fixed-fee scheme.

According to the report on mutual funds fees and expenses (SEC 2001), mutual fund fees
consist of both shareholder fees and annual fund operating expenses (TER). Shareholder fees
are paid to the broker and/or to the fund itself, when investors purchase or redeem their
shares. Most brokers charge both front-loads on purchase of shares and back-end loads on
redemption of shares. Annual fund operating expenses include management fees, distribution
(12b-1) fees, and other expenses. Some administrative fees that are not included in the “other
expenses” category are also payable to the investment adviser. Distribution(12b-1) fees include
fees paid for marketing and selling fund shares, and for advertising. Other expenses include
legal expenses, accounting expenses and so on. SEC regulations impose a full disclosure of
the annual expense ratio.

We denote by fe the expense ratio for the one-period and by f the corresponding manage-
ment fees. Both are expressed as a percentage of the investor wealth under management in
the fund. The compensation of the manager only includes the management fee f . Denoting
by f0 the remaining part of the expense ratio, we have

fe = f0 + f , (1)

where f0 gathers all the costs that do not contribute to the manager’s compensation, such
as annualized shareholder costs13, distribution(12b-1) costs, legal costs and so on. The fund
manager cannot benefit directly from f0, but the investor must pay this cost. Consequently,
denoting by r̃m and r̃i the return on the mutual fund and on the benchmark portfolio respec-
tively, the investor’s terminal wealth W̃i reads

W̃i = (1− ω)(1 + r̃i) + ω(1 + r̃m)(1− fe), (2)

while the manager’s compensation W̃m is given by

W̃m = ω(1 + r̃m)f. (3)

2.2 Description of the manager’s and the investor’s optimization problems

The game in our model is sequential. First, the fund manager announces the fee f she will
charge. Then, the investor chooses the optimal amount ω of her initial wealth she wishes to
invest in the mutual fund.

Definition 1. The investor’s demand function is the mapping Ω : fe 7→ ω = Ω(fe). It relates
the expense ratio charged by the manager to the fraction of wealth invested by the investor
in the mutual fund.

13When f0 includes annualized shareholder costs, the expense ratio fe is replaced by Total Shareholder Cost
(TSC), denoted as fTSC .
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We assume that the investor is rational; her demand function Ω(fe) is such that it maximizes
the expected utility of her terminal wealth W̃i, conditional on her information set Ii

Ω(fe) = arg max
ω

E
[
Ui

(
W̃i

)∣∣∣ Ii

]
,

s.t. ω ≥ 0.
(4)

This problem makes sense if and only if a solution exists, which requires that the managed
fund is not undesirable, i.e.

Hypothesis 1. In the absence of any management fees (fe = f0), the managed fund is not
undesirable if

∃ω > 0, such that E [Ui ((1− ω)(1 + r̃i) + ω(1 + r̃m)(1− f0))| Ii] ≥ E [Ui (1 + r̃i)| Ii] . (5)

The demand function is strictly decreasing with respect to fe. Since we do not allow short-
selling of fund shares, it is convenient to define the reservation fee as the upper limit for f
such that the demand remains always positive.

Definition 2. The reservation fee, i.e. the maximum level of management fees, denoted by
fmax, is

fmax = min {1− f0, inf{f |Ω(f0 + f) > 0}} . (6)

We immediately get the following result:

Proposition 1. Given a non-undesirable managed fund, the reservation fee the manager can
charge is

fmax = (1− f0)− E [(1 + r̃i) · U ′ (1 + r̃i) |Ii]
E [(1 + r̃m) · U ′ (1 + r̃i) |Ii]

. (7)

It is the largest fee that makes the managed fund non-undesirable.

We assume that the fund manager knows that the investor is an utility-maximizer. The
fund manager thus chooses the optimal level of fees in response to her expected investor’s
demand, conditional on her own information set Im. For simplicity,

Hypothesis 2. We assume that the manager knows the expression of the investor’s demand
function.

Such an assumption is rather strong and may seem both simplistic and unrealistic. On the
contrary, as we will see later, this hypothesis is quite reasonable from a practical point of
view. Indeed, we shall prove that, irrespective of the specific shape of the investor’s utility
function, her optimal demand function always remains quite close to a linear (affine) function
of the expense ratio. Therefore, denoting by Um the manager’s utility function and by W0

her initial personal wealth, her optimization problem reads

max
f

E
[
Um

(
W0 + W̃m

)∣∣∣ Im

]
,

s.t.

{
ω = Ω(f0 + f),
f ∈ [0, fmax].

(8)
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In our setting, the manager can only choose the percentage of the management fees f . She
plays no role in the determination of f0, which is exogenously set. The determination of the
optimal value of f0 is a subtle problem and is beyond the scope of this article. A priori, f0

should be kept as small as possible in order to reduce the total fees and therefore attract the
largest number of investors. But, among others, f0 includes the advertisement costs which
may increase the demand for the fund as argued by Sirri and Tufano (1998). We make the
assumption that the optimal levels for f0 and f can be determined independently and that f0

has already been fixed by the various running costs and the commercial strategy of the fund.
We can then state the following important result, whose proof is given in appendix A:

Proposition 2. Let f∗ be the solution to the manager’s optimization problem (8). If a
solution f∗ exists, it solves the optimization problem

max
f

f · Ω(f0 + f)

s.t. f ∈ [0, fmax]
. (9)

The optimal management fee f∗ depend neither on the manager’s preferences Um, nor on the
manager’s perceptions about the distribution of asset returns (r̃i, r̃m|Im).

A priori, since the investors have no bargaining power, the management fees should appear
as a commitment from the manager, and therefore should depend on her own preferences.
The fact that the optimal management fee does not depend on the manager’s preferences is a
result of the following assumptions: (ı) Investors have no market power, they are price-takers
and can only passively react to the fund manager’s fee-setting strategy. (ıı) The fund manager
has a full knowledge of investor’s preferences and therefore of her demand function.

It is worth noticing that this result is independent of (ı) the distribution of both manager’s
and investor’s portfolio, (ıı) the form of the investor’s utility function, as long as it is increasing
and concave, (ııı) the investor’s rationality, as long as investors exhibit a decreasing demand
function. In detail, as Capon, Fitzsimons, and Prince (1996) suggested, investors don’t have
to be utility-maximizers. They can exhibit some deviations from pure rationality in their
decision process, leading to possibly nonlinear demand functions.

Proposition 2 suggests that all relevant information for the analysis of mutual fund fees
is contained in the investor’s information set on the fund and on the benchmark portfolio,
which is a subset of all the public information available in the market, due to the existence of
search-cost, investor’s limited information processing and gathering ability14 and ignorance
of easily accessible public information. Proposition 2 is all the more interesting because it
makes the fund manager’s private information irrelevant to the determination of what should
be the right fee level.

This proposition put emphasis on the role of investor’s limited ability and knowledge in
explaining fund’s market power and potential mispricing of the fund services. First, investors
may receive biased information about the fund’s historical performance. While financial
information disclosed by mutual funds have to comply with SEC rules, there is still room for
funds to make their performance appear better within these legal constraints. The Standards

14This is referred to as bounded rationality, see Simon (1982)
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of Practice Handbook of CFA Institute (2005) provide many examples of how funds may
potentially beautify their performance. Second, unsophisticated investors may simply follow
recommendations from their friends or from the funds themselves, instead of performing their
own analysis. Third, it is difficult for most investors to assess correctly the fund’s future
performance based on publicly available information because of the lack of persistence in
returns15.

3 Characterization of the equilibrium, of the investor demand
function and of the optimal management fee

Let us now search for the possible existence of an equilibrium, defined as follows.

Definition 3. An equilibrium solution (ω∗, f∗) ∈ R+× [0, fmax] is a solution to the optimiza-
tion problems (8) and (4) with ω∗ = Ω(f0 + f∗).

We first focus on the case where the investor chooses the risk-free rate as her benchmark.
Then, we investigate the consequences of her choice of a risk-portfolio as the benchmark.

3.1 Case where the benchmark portfolio is the risk-free asset

We first consider the case where the benchmark portfolio is the risk-free asset whose return
is denoted rf . We assume that, conditional on the investor’s information set, the returns of
the managed fund are distributed according to

r̃m|Ii ∼ N (
r̄m, σ2

m

)
, (10)

with r̄m > rf . In order to get a closed form expression, we restrict our attention to the case
where the investor is equipped with a CARA utility function. Denoting by a the coefficient of
absolute risk aversion of the investor, hypothesis 1 is satisfied if and only if (1−f0)(1+ r̄m) >
(1 + rf ). This simply means that, in the absence of management fees, for the manager’s fund
to be non-undesirable, the expected return of the managed fund, net of operating costs, must
be larger than the risk free rate. The demand function which solves the optimization problem
(4) then reads

Ω(fe) =
(1 + r̄m)(1− fe)− (1 + rf )

a · σ2
m(1− fe)2

. (11)

This allows us to state the following

Proposition 3. An equilibrium solution exists if and only if hypothesis 1 holds. It is charac-
terized by the demand

ω∗ =
(1− f0)2 · (1 + r̄m)2 − (1 + rf )2

4a · σ2
m(1− f0)2 · (1 + rf )

, (12)

15See Berk and Green (2004). Gruber (1996), Carhart (1997). Generally there is no persistence of fund’s
performance over the long term. However, there is some evidence of persistence over shorter quarterly horizons.
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and by the optimal management fee charged by the fund manager

f∗ = (1− f0) · (1 + r̄m) · (1− f0)− (1 + rf )
(1 + r̄m) · (1− f0) + (1 + rf )

, (13)

provided that f∗ ∈
[
0,

r̄m−rf

1+r̄m
− f0

]
.

Hypothesis 1 ensures that the interval
[
0,

r̄m−rf

1+r̄m
− f0

]
is non-empty, and therefore that an

equilibrium solution exists. The proof of Proposition 3 is given in appendix B.

Expression (13) can be approximated by

f∗ ≈ 1
2

(
r̄m − rf

1 + r̄m
− f0

)
≡ fmax − f0

2
, (14)

where fmax, as given by definition 2, is the absolute maximum level of fees the manager can
charge, as seen from expression (2). Formula (14) shows that the optimal management fee is
close to one-half of this maximum value. We will show below that this result is quite general.

Further insight into this result can be obtained by remarking that, since r̄m is usually much
smaller than 1, the optimal management fee is approximately equal to one-half the excess
return of the managed fund over the risk free rate minus all other fees. Thus, in equilibrium,
the benefits of the fund management resulting in a non-zero excess return over the risk-free
rate and the other costs should be equally shared between the investor and the manager. An
alternative interpretation is that, given the fee, the investor expects a rate of return on the
managed fund equal to

r̄m ≈ rf + 2 · f + f0, (15)

so that her expected gain, net of fees, is

r̄m − fe = rf + f, (16)

i.e, the risk free rate plus the management fees. Thus, higher management fees must be
justified by higher expected returns, both before and after fees.

3.2 Case of a benchmark portfolio made of risky assets

We now assume that, conditional on the investor’s information set, the joint distribution of
returns of the benchmark portfolio and of the mutual fund is given by

(
r̃i

r̃m

∣∣∣∣ Ii

)
∼ N

((
r̄i

r̄m

)
,

(
σ2

i ρσiσm

ρσiσm σ2
m

))
. (17)

We still restrict our attention to the case where the investor is equipped with a CARA utility
function16. We find that Hypothesis 1 is satisfied if and only if (1− f0) · (1 + r̄m− aρσiσm) >

16We have also solved this problem for CRRA utility functions. The setting of the optimization problem is
given in Appendix D. In this case, the solution does not have a closed analytical form and requires numerical
computations. The numerical results confirm the remarkably strong robustness of our analytical result derived
for CARA utility functions. Calculations and Figures for CRRA utility functions are available from the authors
upon request.
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1+rf−aσ2
i . This inequality means that, in the absence of management fees, the risk-adjusted

expected return on the managed fund, net of operating costs, must be larger than the risk-
adjusted expected return on the benchmark portfolio. We then get

Proposition 4. An equilibrium solution exists if and only if hypothesis 1 holds. It is then
characterized by the demand function

Ω(fe) =
1
a
· (1 + r̄m − aρσiσm) · (1− fe)− (1 + r̄i − aσ2

i )
σ2

m(1− fe)2 − 2ρσiσm(1− fe) + σ2
i

(18)

and by the optimal management fee charged by the fund manager

f∗ =
Rm

[
σ2

i − 2(1− f0)ρσiσm + (1− f0)2σ2
m

]

Rm(1− f0)σ2
m − 2Rmρσiσm + Riσ2

m

−

√[
σ2

i − 2(1− f0)ρσiσm + (1− f0)2σ2
m

] · [R2
mσ2

i − 2RmRiρσiσm + R2
i σ

2
m

]

Rm(1− f0)σ2
m − 2Rmρσiσm + Riσ2

m

,

(19)

where
Rm = 1 + r̄m − aρσmσi and Ri = 1 + r̄i − aσ2

i , (20)

provided that f∗ ∈
[
0, Rm−Ri

Rm
− f0

]
.

As stated previously, hypothesis 1 ensures that the interval
[
0, Rm−Ri

Rm
− f0

]
is non-empty,

and therefore that an equilibrium solution exists. The proof of Proposition 4 is given in
appendix C.

To provide more insight, we expand the cumbersome expression (19) to the first order with
respect to r̂i = Ri − 1, r̂m = Rm − 1 and f0. The optimal management fee can then be
simplified into

f∗ ≈ r̂m − r̂i

2
− f0

2
≈ fmax − f0

2
. (21)

This equation has the same structure as (14), except that rf is now replaced by r̂i. There is
also an adjustment for risk, as rm and rf are replaced by r̂m and r̂i respectively. Again, the
optimal management fee is approximately half of the maximum level of fees the manager can
charge to the investor.

As proved in Appendix E, this rule is to a large extent independent of (ı) the joint distri-
bution of returns on the benchmark portfolio and the managed portfolio and (ıı) the form
of the investor’s utility function, as long as it is increasing and concave. In fact, it holds as
long as the investor’s demand function is almost linear, which turns out to be a very good
approximation for most practical situations.

Relation (21) links fees to the fund’s performance conditional on the investor’s informa-
tion. It provides the amount of fees the investor is willing to pay for the fund’s investment
management service, in equilibrium. This fee is fully characterized by the investor’s choice
of the benchmark and her anticipation of the future performance of both the fund and the
benchmark. More transparently, we have

f∗ + fe ≈ (r̄m − r̄i)− a(βm − 1)σ2
i (22)
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This general relation will be the cornerstone of our empirical analysis presented below.

Figure 1 plots the demand function (18) versus the total fee fe for different values of the
coefficient of absolute risk aversion a. The reservation fee fmax is the value corresponding to
the intersection of the curves with the horizontal axis. As previously announced, the various
demand functions are very close to straight lines. In addition, irrespective of the value of the
coefficient of absolute risk aversion a, all the curves intersect at the point

fp =
r̄m − r̄i

1 + r̄m
, Ω(fp) := Ωp =

σ2
i − 1+r̄i

1+r̄m
ρσiσm

σ2
m

(
1+r̄i
1+r̄m

)2
− 2ρσiσm · 1+r̄i

1+r̄m
+ σ2

i

. (23)

The approximate linear dependence of the demand function observed in Figure 1 can be
rationalized analytically by a first order expansion of (18) around this fixed point, yielding

Ω(fe) ≈ Ωp +




ρσiσm +
(

1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2
− 2ρσiσm · 1+r̄i

1+r̄m
+ σ2

i


 · (fe − fp) . (24)

The two leftmost terms in the numerator of the fraction are generally much smaller than the
rightmost one. Thus, the slope of the demand function is almost inversely proportional to
the investor’s absolute risk aversion. This linearized expression (24) of the demand function
shows that the absolute value of the slope, i.e. the elasticity of the demand, decreases when
the coefficient of absolute risk aversion increases. Investors tend to be less sensitive to a
change in fees when they are more risk averse.

Two distinct scenarios are presented in Figure 1. In the upper panel, the investor considers
the fund to have diversification benefits in the context of her own portfolio strategy. This is
the case when Ωp > 0. The fund’s beta, defined as

β =
Cov(r̃m, r̃i)

Var(r̃i)
, (25)

is close to one17. In the lower panel of Figure 1, the fund is a leveraged fund. In this case, we
have Ωp < 0 and the fund’s beta is strictly larger than one.

In the first case, the equilibrium solutions (f∗, ω∗), given by the stars (*) on the different
curves, show that the manager actually exploits the diversification value perceived by the
investor by charging higher fees when the investor coefficient of absolute risk aversion is
larger. This rationalizes the interpretation of Gil-Bazo and Ruiz-Verdu (2007) according to
which fees tend to increase when the elasticity of the demand decreases. In the case of a
leveraged fund, a reversed relationship is revealed: If funds are risky enough, they attract
risk-averse investors by charging smaller fees.

Figure 2 depicts the changes of the optimal management fee (upper panel) and of the
corresponding investor’s demand (lower panel) as a function of the investor’s anticipated
correlation between the mutual fund and the benchmark portfolio, for different degrees of the

17Actually we have β = ρσm
σi

< 1+r̄m
1+r̄i

, r̄m is larger than r̄i and the right term is usually slightly bigger than
1.
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investor’s absolute risk aversion a. The upper panel predicts that the equilibrium fee decreases
when the correlation between the two portfolios increases. This reflects the fact that investors
put more value on those funds which provide a greater diversification potential with respect
to their benchmark portfolio. In addition, this figure confirms that more risk averse investors
accept higher fees when the fund provides diversification benefits.

The lower panel shows the dependence of the demand as a function of the correlation,
for different types of investors. For the chosen parameters, we observe that the less risk
averse investors put a larger fraction of their wealth in the managed portfolio when the
correlation increases, while the more risk averse investors invest less in this portfolio for the
same correlation. This reflects the fact that more risk averse investors are more eager to seek
diversification.

Figure 3 plots the equilibrium fee (upper panel) and the investors’ demand (lower panel) as
a function of the investor’s expected future volatility (standard deviation) of the benchmark
portfolio. The correlation coefficient is set to ρ = 0.7. We recall that the expected future
volatility of the mutual fund is σm = 0.08. The upper panel shows that, overall, investors
accept higher fees when the expected volatility of the benchmark portfolio increases. This
result is not surprising in so far as, everything else taken equal, the larger the benchmark
volatility, the more attractive the managed portfolio. In addition, as previously, the more
risk-averse investors are the more sensitive to an increase of the benchmark volatility and are
thus more agreeable to paying higher fees. The lower panel confirms that the more risk-averse
investors buy more mutual fund shares than the less risk-averse investors even if the number
of shares they buy decreases, overall, when the benchmark volatility increases.

Figure 4 shows the equilibrium fee (upper panel) and the investor’s demand (lower panel)
as a function of the investor’s expected return on the mutual fund. According to expression
(21), the equilibrium fee increases with the expected return on the mutual fund. The upper
panel shows that the change is almost insignificant with respect to the different levels of risk
aversion. In contrast, the lower panel shows that the level of risk aversion affects the demand
significantly. More risk-averse investors are more sensitive.

In the upper panel of figures 2, 3 and 4, all curves intersect at one single point. At this
point, the optimal management fee is the same for investors with different value of the risk
aversion coefficient a. In fact, the management fee in equation (19) depends on the coefficient
of risk aversion a only through the ratio

Ri

Rm
=

1 + r̄i − aσ2
i

1 + r̄m − aρσmσi
(26)

Therefore, if the relation
1 + r̄i

σi
=

1 + r̄m

ρσm
(27)

holds, the optimal management f∗ fee is independent from a and it is given by

f∗ =
ρσ2

i − 2(1− f0)ρ2σiσm + (1− f0)2σ2
mρ

ρ(1− f0)σ2
m − 2ρ2σiσm + σiσm

−
σi

√[
(1− f0)2σ2

m − 2(1− f0)ρσiσm + σ2
i

] · [1− ρ2]

ρ(1− f0)σ2
m − 2ρ2σiσm + σiσm

(28)
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This result rationalizes in a general way the two distinct scenarios that we show in figure 1.
In one scenario we have

1 + r̄i

σi
≥ 1 + r̄m

ρσm
, (29)

whereas the opposite inequality holds for the alternative scenario. The optimal management
fee is either increasing or decreasing in the risk aversion coefficient a in these two scenarios.

4 Empirical Analysis

In the light of the theoretical results presented in the previous section, and particularly
relation (22), we now analyze the management fees charged by fund managers between July
2003 and March 2007. For this, we use the CRSP Survivor Bias-Free US Mutual Fund
Database.

4.1 Description of the Empirical Model

Our model shows that, in equilibrium, fees are determined solely by the investors’ antici-
pations on the future performance of the mutual funds. Expression (22) quantifies how this
anticipation is transformed into an equilibrium fee level that investors agree to pay.

The CRSP Mutual Fund Database only gives access to the ex-post performance of the funds
through their historical returns. Our strategy is to infer the ex-ante expectations of the
investors on the fund performance on the basis of the amount of fees they are willing to pay,
by using relation (22). In this way, we test the following questions:

(ı) Does the performance achieved by funds justify the fees they charge, given a rational
choice of the benchmark asset?

(ıı) Do funds possess a competitive advantage in terms of fees, realized returns and diversi-
fication benefits, when compared to the benchmark asset?

(ııı) Do investors correctly anticipate funds relative performances, given their benchmark
asset?

As the industry practice suggests, a natural choice of the benchmark portfolio that investors
should use is an index portfolio for the market in which the fund operates. In the following
empirical test, we impose the S&P500 total return index18 to be the investor’s benchmark
portfolio for U.S. domestic equity mutual funds. This is in line with the fact that investors
can buy Exchange Traded Funds(ETFs) or low-cost index funds to achieve index performance
while paying a nearly-zero cost.

18We also use the Dow Jones Industrial Average total return index for a robustness check of our empirical
results.
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For convenience, we define both the after-fees excess return19 and the adjusted beta for the
fund j over a given period, as follows:

after fees excess returnj = (r̄j − r̄index)− (f̄ j + f̄ j
TSC) , (30)

adjusted betaj = (βj − 1)(σindex)2 , (31)

where

f̄ j and f̄ j
TSC = average management fee and average total shareholder cost,

r̄j and βj = fund’s realized average return and beta,
r̄index and σindex = realized average return and volatility of the market index.

Similarly to Khorana, Servaes, and Tufano (2009), we define fund j’s total shareholder
cost (TSC) as a sum of both annual total expenses and annualized shareholder fees, given a
five-year holding period20 in our analysis:

f̄ j
TSC = f̄ j

e (average TER) + front-load/5 + back-end load at five years/5. (32)

Then, expression (22) leads to the regression model:

after fees excess returnj = a · adjusted betaj + b + εj , (33)

where a stands for the investor’s risk aversion and b is an intercept that should equal zero
if investor’s ex-ante expectation matches exactly fund’s ex-post performance. The value of
the bias b reflects the deviation of the ex-post performance of the funds from the investors’
ex-ante expectations of the fund performance. A positive (respectively negative) value of the
bias b can be interpreted as the fact that investors underestimate (respectively overestimate)
the funds relative performance.

When the investors’ benchmark is the risk-free asset, equation (15) predicts that investors
do not demand any excess return associated with the fund’s risk. Investors expect ex-ante a
minimal return of r̄risk−free + fTSC + f . Given the fund’s ex-post return r̄, we define the bias
b∗ for the fund j as follows:

bj
∗ = r̄j − r̄j

risk−free − f j
TSC − f j . (34)

If our model was the whole story of what determines the strategic interactions between
homogeneous investors and mutual fund managers, and what represents the risk-return per-
formances of mutual funds and of the benchmark asset, then the regression model (33) should
provide directly a unique estimation of investors’ risk aversion for the whole mutual fund uni-
verse. However, this expectation is of course naive, given the heterogeneity of mutual funds
and of investors. Notwithstanding the formidable problem of making sense of the extraordi-
nary heterogeneity in fund performance and in their fee structure, we can nevertheless identify
remarkably robust and meaningful regularities. The key insight was to organize our universe

19We have used f̄ j
TSC instead of f̄ j

e to calculate after-fees excess return, because the former includes share-
holder fees that are not included in the TER. Shareholder cost include both front-loads and back-end loads. It
is simple to show that these loads, if annualized, can be added directly to the annual total expense ratio.

20The annual redemption rate is equal to 20%.
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of mutual funds into deciles of decreasing risk-adjusted return performance quantified by their
Sharpe ratio. As we show in the following sections, remarkably good regressions with model
(33) are found, which provide insightful economic interpretations. Particularly, we identify
different groups of investors characterized by their specific risk aversion coefficient a. And
we are able to relate these groups to distinct fund characteristics, such as their leverage level
and their relative performance. Our model also allows us to identify several subclasses of
“abnormal” funds, which either provide good diversification and after-fees over-performance
or give lower diversification benefits and sub-performance. This classification is performed on
the basis of clustering analysis and the values of the regression intercept b.

4.2 Description of the Data Sample

We obtained our sample from the CRSP Survivorship-Bias-Free US Mutual Fund Database.
The CRSP mutual fund database contains monthly data for more than 25,000 U.S. open-end
mutual fund from January 1, 1962 to March 2007. Data on total expense ratios (TER) for
US mutual funds is available from January 1962 to March 2007. However, management fees,
front-loads and back-end loads have only been reported since July 2003. Therefore, our initial
sample is chosen to contain all open-ended mutual funds operating during the period form
July 2003 to March 2007. From this initial sample, we excluded all non-domestic equity
mutual funds. In selecting funds, we resort to the Standard & Poor’s category codes and the
geographic codes provided by the CRSP.

Furthermore, we removed funds that have no complete information on TER, management
fees, loads, monthly total returns, or total net assets throughout the entire time interval from
July 2003 to March 2007. Examination of the remaining sample showed that some funds
have weighted average operating expenses that are anomalously large for mutual funds. For
example, some funds have a weighted average operating expense over 40%. We also deleted
these funds, as being outliers.

The sample under study contains therefore 3,875 US domestic equity mutual funds with
170,500 fund-month observations. Table 1 characterizes our sample. We present descriptive
statistics of funds for their weighted average total net assets (TNA), their asset-weighted
average turnover ratio, their Sharpe ratio and the various fees such as the average TER,
average management fees, average total shareholder cost (TSC), both front-load and back-
end load fees.

We include both passive and active funds in our studies, as shown in Table 1 which exhibits
turnover ratios ranging from zero to 2582% per year21. We are able to do so because our
model does not make any assumptions on the funds’ underlying trading mechanism. This
distinguishes our studies from several others studies22.

21This later figure implies that the fund portfolio is totally rebalanced 26 times per year, or once every two
weeks, on average.

22Several studies such as Gruber (1996), Wermers (2000) and Glode (2008) focus on actively managed mutual
funds.
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4.3 Descriptive Statistics and Characteristics of Sharpe Ratio-Sorted Do-
mestic Equity Funds

In Table 2, we sort our selected set of 3,875 domestic equity funds into 10 deciles according
to their Sharpe ratios. We present several descriptive statistics. For each decile, we provide
the mean value of the Sharpe ratio, total returns, fees, turnover, and beta.

Table 2 shows that the total expense ratio (TER), total shareholder costs (TSC) and man-
agement fees tend to increase when the Sharpe ratio decreases. Funds from the bottom decile
charge on average 14 basis points more in management fee and 49 basis point more in TSC
than top decile funds. These differences are economically significant. This is in line with
existing empirical evidence that worse performing funds tend to charge higher management
fees and total expenses. Worse-performing funds tend to also have a higher beta and a higher
turnover ratio.

Another interesting observation provided by Table 2 is that funds from the last two Sharpe
ratio deciles charge the highest back-end loads and very low front-loads, compared to bet-
ter performing funds. This could be rationalized as a strategic behavior of mutual fund
managers, exploiting deficient information gathering or inattention on the part of investors:
poor-performing funds attract investor’s initial investment by lowering front-load fees. This
strategy makes sense, given the observation by Barber, Odean, and Zheng (2005) that investors
are more sensitive to salient fees such as front loads than to operating expenses. Then, by
raising back-end load fees, bad-performing funds hinder investor’s redemption activity. In
support of this reasoning, Alves and Mendes (2007) and Nanigian, Finke, and Waller (2008)
indeed suggested that the lack of reaction of investors to bad-performing funds is caused by
the existence of back-end loads.

Furthermore, Table 2 shows that both 12b-1 fee and the maximal level of 12b-1 fees tend
to increase when the fund’s Sharpe ratio decreases. This suggest that bad-performing funds
tend to spend more on marketing and distribution than better-performing funds. This is in
line with previous reports that worse-performing funds tend to charge higher fees than better-
performing funds23. Funds from the first four deciles have seized a share of around 60% of the
fund market, and the funds from last two deciles still keep approximately 10% market share.

In each Sharpe-ratio based deciles, funds have various investment styles. Table 3 lists all
available S&P investment styles and codes for US domestic equity funds. Empirical studies24

have shown that funds with various styles exhibit different performances. These funds may
target different groups of investors, with diverse degrees of risk aversion. It may thus be
fruitful to distinguish distinct fund segments within a single Sharpe-ratio based decile. A first
idea would be to classify funds according to their investment styles. This approach is however
unreliable because funds often change their investment style and sometimes report misleading
information 25. Below, we will use a cluster analysis based on the formulation of our regression

23See Elton, Gruber, and Das (1993), Gruber (1996) and Chevalier and Ellison (2002).
24See Wermers (2000),Brown and Goetzmann (1997) , Chan, Chen, and Lakonishok (2002), Brown and

Harlow (2002), Barberis and Shleifer (2003), Horan (1999).
25Brown and Goetzmann (1997) argued that reported investment styles are not satisfying in terms of reflect-

ing a fund’s true investment activities. Brown and Goetzmann (1997) and Donnelley (1992) have shown that
some funds misclassify themselves.
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model, that reveals striking regularities in the best- and worst-performing funds.

4.4 Empirical Tests of the Model

Figure 5 plots the after-fees excess returns for the whole sample of 3,875 US domestic equity
mutual funds as a function of their adjusted beta’s. The regression line obtained from relation
(33) is also shown. The bias is significant and negative (b = −1.2%) but the determination
coefficient R2 is very small, so that the model has nearly no explanatory power when applied
to the whole sample of mutual funds. This result is not surprising given the huge heterogeneity
of fund styles and investor preferences.

Given that investors have heterogeneous risk aversions and, as a consequence, look for dif-
ferent risk vs. return trade-offs, it is necessary to sort funds so as to isolate homogeneous
sub-samples. As suggested by Hartman and Smith (1990), funds investors can be best seg-
mented by their risk tolerance. Each market segment characterized by a given risk-return
profile corresponds to a homogeneous class of investors with a common coefficient of risk
aversion. We consider the simplest and most generally used measure of risk-return profile,
namely the Sharpe ratio. By sorting and grouping funds by their Sharpe-ratios, our regression
model identifies new regularities about mutual funds, which can be traced back to the risk
aversion of their investors.

For each sub-sample, we use the mixed Gaussian clustering method (Press, Teukolsky,
Vetterling, and Flannery 2007) for a refinement of the analysis of our universe of mutual
funds. Brown and Goetzmann (1997) already developed a cluster classification scheme based
on fund returns, that identified seven clusters. Our cluster analysis is however completely
different because it uses the fund data organized according to the regression model (33). In
other words, different clusters, if any, correspond in our approach to different pairs of after fees
excess return and adjusted beta. This can be interpreted to correspond to different investors
risk aversion a and different abnormal excess returns b.

Figure 6 is typical of the results for the different Sharpe ratio deciles. It shows the existence
of two main clusters for the second decile and three clusters for the bottom decile. In each
cluster, the linear regression (33) provides an excellent fit to the data, with R2 values in the
range from 0.45 to 0.84. This provides a strong support to our model, while at the same
time offering a novel tool for identifying abnormal funds. We refer to the largest cluster as
the “normal” set constituted of mutual funds with a well-defined risk-adjusted performance
and a clear selection of investors with a specific risk-aversion level. The other smaller clusters
identify anomalies, whose characteristics are described below.

Since the benchmark portfolio corresponds to the origin of these plots, distances from and
positions with respect to the origin provide a natural classification of fund performance. It
is convenient to label funds with a beta smaller (respectively larger) than one as “diversifi-
cation funds” (respectively “leveraged funds”). The top-left side of the two panels of Figure
6 corresponds to the best funds which provide both diversification benefits and absolute
benchmark-beating performances. Funds in the bottom-right side of the panels of Figure 6
are the worst funds, that are inferior to the index, even with leverage. Regardless of investors’
risk aversion, funds in the top-left side provide superior relative performance and funds in
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the top-right side provide inferior relative performance, when compared with the benchmark
portfolio. Funds in the top-right side of the panels provide index-beating performance, but at
the price of higher risks (higher leverage). Funds in the bottom-left side of the panels provide
diversification benefits but fails to beat the benchmark’s return after fees. The comparison of
fund performance between funds from the top-right side and bottom-left side and the bench-
mark depends on how investors value risks against returns, i.e. on the risk aversion coefficient
in our model.

Consider first the upper panel of Figure 6. The two regressions on the two clusters with
model (33) show that investors of the abnormal funds (upper cluster) have a higher risk
aversion (slope a of the regression line) compared with investors of the normal funds. This is
rational, given the fact that most of these funds are diversification funds. In the lower panel
of figure 6, there is a cluster of under-performing funds, for which our model determines that
the corresponding investors have quite low risk aversion, in line with the fact that most of
them are leveraged funds. In addition, abnormal funds in the 2nd decile generate on average
much higher returns than normal funds. In contrast, abnormal funds generate much lower
returns than normal funds in the last decile. The segmentation of the universe of funds
according to the two variables, after fees excess return and adjusted beta, thus provides an
intuitive explanation of the impact of the risk aversion on the fund’s performance relative
to the market index. The higher the absolute value of the slope a, the more risk averse are
investors. This rationalizes the segmentation found in the ten different deciles.

Table 4 complements Figure 6 by providing data on the size of each different segments,
according to the different investment styles. Specifically, for each decile of the distribution of
Sharpe-ratios and for each segment identified by the cluster analysis, we report the number
of funds of each investment style. There are total 20 investment styles for all US domestic
equity funds. According to this table, abnormal funds are mainly funds that operate in special
industries such as the Equity US Real Estate Sector (URE), the Equity Utilities Sector (UTI),
the Equity Energy Sector (NRG) and the Equity Information Technology Sector (UTE). In
the top decile, abnormal funds consist mainly of utilities funds and real estate funds. In the
last decile, information technology funds dominate in the segments of abnormal funds. We
confirm, as shown in many studies26, that investment styles have a large impact on perfor-
mance. For instance, we find that growth funds tend to underperform value funds. Moreover,
we find that sector funds such as real estate funds and energy, utility funds have performed
very well over the time period from July 2003 to March 2007. Real estate funds have bene-
fited from a booming housing market, whereas energy and utility funds have benefited from
soaring oil prices during this time. In contrast, information technology funds were consis-
tently underperforming within this period. While these results are not new in themselves, the
good correspondence with our robust cluster segmentation and our regression model provides
additional support for our theory.

Table 5 presents the breakdown of the population of funds, classified according to the
Sharpe ratio deciles, their leverage and excess returns, both for normal and abnormal funds.
Unsurprisingly, diversification funds with positive after-fee excess return (AFER) are mostly
concentrated in the top decile. At the other extreme, leveraged funds with negative after-fee
excess return (AFER) are mostly concentrated in the bottom decile. The two other categories

26See Chan, Chen, and Lakonishok (2002), Brown and Harlow (2002), Horan (1999).

20



are more uniformly populated. One can also observe that most normal funds are leveraged
funds with a negative after-fee excess return. In the last three deciles, more than 80% of the
funds belong to this category. In contrast, diversification funds dominate in the top two deciles
only: The top (respectively second) decile has about 60% (respectively 50%) of diversification
funds. Table 5 shows that only 51% of funds in the top decile and 12% in the next decile beat
the index-tracking funds, whereas over 60% of funds from the last four deciles underperform
the benchmark funds. This result is an indication of the funds underperformance over the
period under consideration.

Table 6 presents the results of the OLS regression of the funds’ after fee excess returns
against their adjusted beta according to (33), for both normal and abnormal funds within
each Sharpe ratio decile. We also provide the mean value of the Sharpe ratio, total returns,
fees, turnover, beta, and investors ex-ante expected returns. We find that, compared to normal
funds, abnormal funds tend to charge higher fees as shown in their TSC and TER. They also
have higher turnover and higher standard deviation.

For both the normal and the abnormal funds, we find that the coefficient a of risk aversion
tend to be larger for the top decile (better-performing) funds than for the bottom deciles
(worst-performing) funds. Interpreted within our model, this indicates investors’ self-selection
according to the inverse risk measure provided by the Sharpe ratio. This behavior is fully
rational: the more risk-averse investors choose the less risky funds, i.e. those with the highest
Sharpe ratio. In contrast, the less risk-averse investors choose the most risky funds, i.e., those
with the smallest Sharpe ratio. In addition, the underperforming funds are mostly leveraged
funds with an average beta of 1.30 for normal funds and an average beta of 2.3-2.5 for abnormal
funds. Therefore, this situation is in accordance with the second scenario obtained from our
theoretical model and exemplified on the lower panel of Figure 1: when funds are leveraged,
managers tend to charge either higher fees to less risk averse investors or tend to offer lower
fees to attract the more risk averse investors.

Furthermore, the coefficient b of the regression (33) is found statistically different from zero
(see below) for all deciles. We find that only the funds in the top and the 2nd deciles exhibit
a positive value of the intercept b. These funds perform better than low-cost index-tracking
investment vehicles, and outperform the investors’ ex-ante expected performance. Within all
abnormal funds, funds from the first four deciles have a very significantly positive value of
the bias b. These funds have performed well in this period. However, the majority of U.S.
equity mutual funds exhibit a negative value of b. More specifically, b is significantly smaller
than zero for eight of ten deciles for normal funds and for five of the 10 deciles for abnormal
funds. Within our regression model, this can be interpreted as an evidence that about 70-
80% of US domestic equity funds have added markups over the period from July 2003 to
March 2007. The rationalization is the following: In a market with perfect competition, if a
fund underperforms the benchmark in terms of returns, diversification benefits and fees, for
several years, it either has to lower down its fees to match its relative after-fees performance
to the benchmark asset, or to exit the market. The continuing existence of these seriously
underperforming funds is an indication for possible markups in the fund industry. Along with
statistics on fees across all deciles in Table 6, our model provides a natural characterization
for the well-known observation that worse-performing funds tend to charge higher fees than
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better-performing funds27.

Using the OLS regression model (33), we estimate the investors ex-ante expected returns
defined by

Ex-ante expected return = Total return− TER− b. (35)

where TER refers to the total expense ratio. We find that the investors ex-ante expected return
is remarkably well-behaved, when the S&P500 index is taken as the investor’s benchmark.
The mean value of the investors’ expected annual return is approximatively constant across
all Sharpe-ratio sorted deciles and is confined within a small range of 14 -15.7%. ANOVA
tests for the mean (Hogg and Ledolte 1987) show that we cannot reject the hypothesis that
the mean value of investors’ expected return of funds from the 2nd, 3rd, 5th, 6th, 7th and 8th
deciles are equal, at the 10% significance level. We come to the same conclusion for funds from
the 1st, 4th and 9th deciles. This results suggest that investor’s ex-ante expected return shows
no upward or downward trend as a function of the Sharpe ratio28. Within our model, this
suggests that, irrespective of their risk aversion, investors have homogeneous anticipations.
They expect a typical mutual fund to deliver an excess-return after fees of approximately 3%
above the benchmark. This constancy of the investors ex-ante expected returns is a strong
point in favor of the explanatory power of our model, as it identifies one “universal” in an
otherwise complex universe of mutual fund characteristics.

Investors’ optimism bias is revealed by (i) the negative values of b and (ii) investors’ high
ex-ante expected returns. As negative b’s are found for all deciles except the top two, this
suggests that most investors overestimate the performance of funds in terms of fee-adjusted
excess returns and of diversification potential. A possible origin of this optimism bias may be
ascribed to the lack of financial literacy, as reported in Capon, Fitzsimons, and Prince (1996)
and Alexander, Jones, and Nigro (1998). Funds’ marketing efforts, as reflected by their 12b-1
fees, could also play an important role. Table 6 shows that both normal and abnormal funds
of the last two deciles tend to spend significantly more on marketing and distribution than
funds from the first two deciles.

Finally, the last column of Table 6 presents the expected return biases b∗ of various deciles
sorted by their Sharpe ratios, calculated according to equation (34) derived from our model,
assuming that the investors choose a risk-free asset, such as their bank savings or a T-Bill
as their benchmark. We actually take the four-weeks treasury bills as the proxy for the risk-
free benchmark. The last column of Table 6 shows that the biases b∗ of normal funds in all
deciles and of the abnormal funds in the top eight deciles are significantly positive. Nearly
all US equity funds exhibit over-performance, when investors take the bank saving as their
benchmark. This suggests that the investors’ optimism bias may come from the choice of such
a suboptimal benchmark, possibly due to lack of sufficient financial literacy.

27See Elton, Gruber, and Das (1993), Gruber (1996) and Chevalier and Ellison (2002).
28We used the standard boxplots, Kruskal-Wallis test (Siegel and Castellan 1988) and ANOVA test (Hogg

and Ledolte 1987) to demonstrate the equality of the mean value of the expected returns on the funds from
the same Sharpe-ratio sorted decile. Details and figures are available upon request from the authors.
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5 Conclusion

In order to understand why investors are buying underperforming investment vehicles, we
have proposed a one-period principal-agent model based on a sequential game played by a
representative investor and a fund manager in an asymmetric information framework. Our
first main result is that only investor preference and information set determines the fee level
of mutual funds. The manager’s true ability is irrelevant here. Second, we have derived an
analytical formula and provided an empirical framework that can help investors to gauge
their funds and their portfolios. Third, our model has identified two alternative fee-setting
scenarios depending on the fund’s possible diversification benefits. Leveraged funds tend
to exploit demand insensitive investors by charging them higher fees while funds providing
diversification benefits lower fees to attract more risk averse investors and charge higher fees
to the less averse investors. A salient point of our model is that investor are making rational
decisions, but these are based on limited, misguided or incorrect information as a result of their
possible misperception about the fund returns and the overall market. This misperception
is identified in the later empirical results as investors’ over-optimism about funds’ future
returns, which suggests possible mismatch between information perceived by the investors
and the reality.

Our empirical study of the U.S domestic equity fund market over the period from July 2003
to March 2007 has identified positive markups for around 80% of the funds in our database.
This basically means that these funds underperform low-cost index funds or ETFs, after taking
the returns, the diversification benefits and the fees into account. However, investors keep
investing in these underperforming funds. Within the information asymmetry framework of
our model, we have shown that this puzzling investment behavior can be interpreted as an
optimism bias towards funds’ future performances. We have been able to estimate that, on an
ex-ante basis, investors expect the fund managers to deliver an overall annual excess-return
of around 3% over the S&P 500, net of fees, irrespective of the investment style and of the
risk level of the funds. Investor’s optimistic expectations of the fund market leads to the high
markups in today’s fund market. The correlation between investors’ overconfidence and the
high management fees and distribution (12b-1) fees found in our analysis suggest that the
later play a role in promoting the former. Another element for investors’ optimism bias is
their lack of financial knowledge. More specifically, we demonstrated that this optimism bias
can be rationalized by assuming that investors choose a risk-free asset as their benchmark.
Our empirical analysis suggests that both factors may explain investor’s overconfidence.

Our one-period model provides a static view of investors’ behavior whose main advantage is
its simplicity and versatility. We did not need any assumption on the fund management strat-
egy. We focused on the crucial effect of information asymmetry on the pricing of mutual funds
in order to disentangle it from learning effects. Our results raise the intriguing question of
why investors have been continuously overoptimistic over time, apparently failing to learn the
lessons of past under-performance of their investments. To address this question, a dynamic
framework that includes learning would be needed. A priori, both asymmetric information
and lack of learning may contribute to higher pricing of funds. This paper demonstrated the
role of the former ingredient. The study of the impact of learning and of its lack thereof is
worthy of future research.
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Table 3: S&P Investment Styles and Codes

Codes Investment Style

ACG Equity All Cap Growth
ACV Equity All Cap Value
LCB Equity Large Cap Blend
LCG Equity Large Cap Growth
LCV Equity Large Cap Value
MCB Equity Mid Cap Blend
MCG Equity Mid Cap Growth
MCV Equity Mid Cap Value
NRG Equity Energy Sector
NTR Equity Materials Sector
SCB Equity Small Cap Blend
SCG Equity Small Cap Growth
SCV Equity Small Cap Value
SEC Equity Sector
UCO Equity Telecommunications Sector
UFI Equity Financial Sector
UHC Equity Healthcare Sector
URE Equity US Real Estate Sector
UTE Equity Information Technology Sector
UTI Equity Utilities Sector
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Table 5: Sharpe Ratio-Sorted U.S. Domestic Equity Funds Analysis I

For each decile of the distribution of Shape ratios, this Table reports the number of mutual funds in
each of four following mutual fund categories: (ı) leveraged funds with positive after-fee excess return
(AFER), (ıı) leveraged funds with negative AFER, (ııı) diversification funds with positive AFER and
(ıv) diversification funds with negative AFER. We have a total of 3,875 US Domestic Equity Mutual
Funds over the time period from July 2003 to March 2007. We perform count statistic for normal
funds and abnormal funds separately.

Fractile Number of funds Leveraged Fund Diversification Fund
Positive AFER Negative AFER Positive AFER Negative AFER

(%) (%) (%) (%)

Normal Funds

Top 10% 300 35.67 0.00 51.00 13.33
2nd 10% 323 51.08 3.10 12.07 33.75
3rd 10% 347 54.76 19.88 0.58 24.78
4th 10% 375 40.80 28.80 0.00 30.40
5th 10% 370 43.24 36.49 0.00 20.27
6th 10% 376 33.78 46.28 0.00 19.95
7th 10% 371 16.44 62.26 0.00 21.29
8th 10% 353 1.13 89.52 0.00 9.35
9th 10% 384 0.26 86.72 0.00 13.02
Bottom 10% 249 0.00 78.31 0.00 21.69

Abnormal Funds

Top 10% 87 10.34 0.00 87.36 2.30
2nd 10% 65 38.46 0.00 61.54 0.00
3rd 10% 40 22.50 0.00 75.00 2.50
4th 10% 13 23.08 0.00 46.15 30.77
5th 10% 17 76.47 0.00 11.76 11.76
6th 10% 12 50.00 8.33 16.67 25.00
7th 10% 16 25.00 6.25 18.75 50.00
8th 10% 35 8.57 42.86 0.00 48.57
9th 10% 3 0.00 0.00 0.00 100.00
Bottom 10% 112 0.00 98.21 0.00 1.79
Bottom 10% 27 0.00 33.33 0.00 66.67
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Figure 1: Investor’s demand function for different values of the risk aversion coefficient a. The
investor’s invested amount is plotted against the fund’s management fee. The equilibrium
solutions (fp, ω(fp)) for each value a has been marked with an asterisk. For diversification
funds with a beta smaller than 1 (upper panel), the equilibrium weight is decreasing and the
equilibrium fee is increasing when investors becomes more risk averse. For leveraged funds
with a beta larger than 1 (bottom panel), both the equilibrium weight and the equilibrium
fee are decreasing. The parameters for top figure are: r̄i = 0.08, r̄m = 0.09, σi = 0.09 and
σm = 0.08; the parameters for bottom figure are: r̄i = 0.08, r̄m = 0.12, σi = 0.08, and
σm = 0.13. Both have ρ = 0.7 and f0 = 0. 30
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Figure 2: Fund’s management fee and investor’s invested amount in the mutual fund as a
function of the anticipated correlation between the fund’s portfolio and investor’s benchmark
portfolio, with all the other parameters being kept fixed. When the two portfolios are perfectly
correlated, it should not be surprising to find that, depending on their risk aversion and taste
for mean return, investors may invest fully in the benchmark portfolio or the mutual fund,
or partly in the mutual fund and partly in the benchmark portfolio. The parameters are:
r̄i = 0.08, r̄m = 0.12, σm = 0.13, σi = 0.08 and f0 = 0.
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Figure 3: Fund’s management fee and investor’s invested amount in the mutual fund as a
function of the expected future volatility (standard deviation) of the investor’s benchmark
portfolio, with all the other parameters being kept fixed. The parameters are: r̄i = 0.08,r̄m =
0.10, σm = 0.08, ρ = 0.7 and f0 = 0
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Figure 4: Fund’s management fee and investor’s invested amount in the mutual fund as a
function of the expected return on the mutual fund, with all other parameters being kept
constant. The parameters are: r̄i = 0.08, σi = 0.10, σm = 0.15, ρ = 0.7 and f0 = 0.
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Figure 5: Plot of the after-fees excess returns for the whole sample of 3,875 US domestic equity
mutual funds versus their adjusted betas. The dotted line shows the regression obtained with
relation (33).
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Figure 6: Cluster Analysis of the 2nd decile (top panel) and of the last decile (bottom panel)
of the distribution of Sharpe ratios for the U.S. Domestic Equity Mutual funds from July 2003
to March 2007.
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Appendices

A Proof of Proposition 2

The necessary condition for the existence of solutions to the problem

max
f |ω(f)

E[Um(W̃m)|Im] (36)

is
∂E [Um(W0 + Ω(f)(1 + r̃m)f)|Im]

∂f
= 0 , (37)

namely

E
[
U
′
m(W0 + Ω(f)(1 + r̃m)f)(1 + r̃m)(Ω(f) + f

∂Ω(f)
∂f

)
∣∣∣∣ Im

]
= 0 . (38)

The demand function Ω(f) is a deterministic function of f , therefore,

E[U
′
m(W0 + Ω(f)(1 + r̃m)f)(1 + r̃m)|Im](Ω(f) + f

∂Ω(f)
∂f

) = 0 . (39)

We have in reality r̃m > −1 and because utility functions are increasing with wealth, namely
U
′
m(x) > 0, we get

E[U
′
m(W0 + Ω(f)(1 + r̃m)f)(1 + r̃m)|Im] > 0 (40)

Therefore, the solution to (36) must be the solution to (9). The concavity of Um ensures the
sufficiency of the first order condition. We stress that we did not need to specify the form of
the utility function Um, nor that of the demand function Ω(f). Q.E.D.

B Proof of Proposition 3

Using equation (11), the investor’s demand function reads

Ω(fe) =
(1 + r̄m)(1− fe)− (1 + rf )

a · σ2
m(1− fe)2

(41)

with fe = f + f0. Then the solution to the manager’s optimization problem is given by
proposition 2. The first order condition yields

f = (1− f0) · (1 + r̄m) · (1− f0)− (1 + rf )
(1 + r̄m) · (1− f0) + (1 + rf )

, (42)

while the second order condition

(1− f0)(1 + rf ) ≥ 0 (43)

always holds. Q.E.D.
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C Proof of Proposition 4

The investor’s demand function is solution to the problem

max
ω|fe

E
[
−e−a((1−ω)(1+r̃i)+ω(1+r̃m)(1−fe))|Ii

]
(44)

with ω ≥ 0 and (r̃i, r̃m) distributed according to (17). The expectation can be readily calcu-
lated

E
[
−e−a((1−ω)(1+r̃i)+ω(1+r̃m)(1−fe))|Ii

]
= −eφω(−a), (45)

where φω(−a) is the cumulant generating function of a Gaussian random variable at point
−a, so that

φω(−a) =
a2

2
[
(1− ω)2σ2

i + 2ω(1− ω)(1− fe)ρσiσm + ω2(1− fe)2σ2
m

]

− a [(1− ω)(1 + r̄i) + ω(1− fe)(1 + r̄m)] . (46)

Maximizing the expectation in (44) is equivalent to minimize φ and therefore the first order
condition yields

Ω(fe) =
1
a
· (1 + r̄m − aρσiσm) · (1− fe)− (1 + r̄i − aσ2

i )
σ2

m(1− fe)2 − 2ρσiσm(1− fe) + σ2
i

(47)

while the second order condition

a2
(
σi

2 − 2 (1− fe) ρσiσm + (1− fe)
2 σm

2
)
≥ 0 (48)

always holds.

Since fe is defined within the range that satisfies ω ≥ 0, it is easy to check that

fmax =
r̄m − r̄i + aσ2

i − aρσiσm

1 + r̄m − aρσiσm
− f0. (49)

As for the manager’s optimization problem, proposition 2 shows that the optimal fee is
solution to the first order condition

Ω(f0 + f) + f · ∂fΩ(f0 + f) = 0 , (50)

namely, with the notations of proposition 4
[
Rm(1− f0)σm − 2Rmρσiσm + Riσ

2
m

]
f2

− 2Rm

[
σ2

i − 2(1− f0)ρσiσm + (1− f0)2σ2
m

]
f (51)

+ [Rm(1− f0)−Ri] ·
[
σ2

i − 2(1− f0)ρσiσm + (1− f0)2σ2
m

]
= 0

whose solutions are

f± =
Rm

[
σ2

i − 2(1− f0)ρσiσm + (1− f0)2σ2
m

]

Rm(1− f0)σ2
m − 2Rmρσiσm + Riσ2

m

+

±

√[
(1− f0)2σ2

m − 2(1− f0)ρσiσm + σ2
i

] · [R2
mσ2

i − 2RmRiρσiσm + R2
i σ

2
m

]

Rm(1− f0)σ2
m − 2Rmρσiσm + Riσ2

m

.

(52)
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Since

∂2
f (f · Ω(f0 + f))f=f± = ±

√ [
(1− f0)2σ2

m − 2(1− f0)ρσiσm + σ2
i

]
× [

R2
mσ2

i − 2RmRiρσiσm + R2
i σ

2
m

] , (53)

the second order condition leads us to choose f−.

However, this solution is admissible if and only if f− ≥ 0, which requires

R2
m

[
σ2

i − 2(1− f0)ρσiσm + (1− f0)2σ2
m

]
R R2

mσ2
i − 2RmRiρσiσm + R2

i σ
2
m (54)

and
Rm(1− f0)σ2

m − 2Rmρσiσm + Riσ
2
m R 0 . (55)

Factorizing (54), we get

[(1− f0)Rm −Ri] ·
[
Rm(1− f0)σ2

m − 2Rmρσiσm + Riσ
2
m

]
R 0, (56)

so that, according to (54) and (55)

f− ≥ 0 ⇐⇒ (1− f0)Rm ≥ Ri (57)

which holds by the assumption made in proposition 4. Q.E.D.

D Robustness Check: CRRA utility function with Log-Prices

The dependence of the results of our model is tested for a larger class of utility functions:

Ui(x) =
x1−a

1− a
(58)

Ui(x) =
x1−b

1− b
(59)

with a, b > 0 and a, b 6= 1, a, b represent respectively the constant relative risk aversion level
of the investors and managers.

To avoid negative prices, we use log-returns. The wealth of the investor at period 1 is

W̃i = (1− ω)er̃i + ωer̃m(1− fe) . (60)

The wealth of the manager at period 1 is

W̃m = ωer̃mf (61)

The log-returns r̃i and r̃m are Gaussian distributed as

r̃i|i ∼ N(r̄i, σ
2
i ) (62)

r̃m|i ∼ N(r̄m,i, σ
2
m,i) (63)

Their correlation perceived by the investor is denoted ρ.
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The investor’s optimization problem is formulated as:

max
ω|fe

E[
((1− ω)er̃i + ωer̃m(1− fe))1−a

1− a
|i] (64)

with ω > 0. The manager’ optimization problem is formulated as

max
f |ω∗

E[
(ωer̃mf)1−b

1− b
|m] (65)

with 0 < f + f0 < 1 given
r̃m|m ∼ N(r̄m,m, σ2

m,m) (66)

In this setup, a closed form solution is difficult to find and we resort to numerical methods.

For the investor’s optimization problem, we have

E[((1− ω)er̃i + ωer̃m(1− fe))1−a|i] =
1

2πσiσm,i

√
1− ρ2(1− a)

I (67)

with

I =
∫ +∞

−∞

∫ +∞

−∞
((1−ω)eri+ωerm(1−fe))1−ae

− 1
2(1−ρ2)

(
(ri−r̄i)

2

σ2
i

+
(rm,i−r̄m,i)

2

σ2
m,i

− 2ρ(ri−r̄i)(rm,i−r̄m,i)

σiσm,i
)
dridrm,i

(68)
We numerically calculated this double integral and solved the optimization problem.

For the managers’ optimization problem, we have (notice ω∗(f) is the same as ω∗(fe) here)

E[
(ωer̃mf)1−b

1− b
|m] =

1√
2πσm,m(1− b)

(ω∗(f)f)1−bI(b, rm,m, σm,m) (69)

with

I(b, rm,m, σm,m) =
∫ +∞

−∞
erm(1−b)e

− 1
2
(
(rm−r̄m,m)2

σ2
m,m

)
drm (70)

Notice that only (ω∗(f)f)1−b depends on f , therefore, the manager’s optimization problem
(65) is equivalent to

max
f |ω∗

(ω∗(f)f)1−b (71)

The numerical results confirm the remarkably strong robustness of our analytical result
derived for CARA utility functions. Figures are available from the authors upon request.

E Generalization

We now consider the general case where the investor’s utility function can be any increasing
and concave function. We do not make any assumption on the joint distribution of returns
on the benchmark portfolio and on the managed portfolio. We just assume that the funds are
not too risky and that the investors are not too risk averse to justify a second order expansion
of the investor’s utility function. Then, as proved in Appendix F, the following result holds
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Lemma 1. Up to second order terms in an expansion in powers of the returns and fees, the
investor’s demand function reads

Ω =

[
σ2

i − (1− fe)ρσiσm

]
+ a(Ω)−1 · [(1 + r̄i) + (1− fe)(1 + r̄m)]

σ2
i − 2(1− fe)ρσiσm + (1− fe)2σ2

m

, (72)

where a(Ω) denotes the investor’s absolute risk aversion at the point (1− Ω)(1 + r̄i) + Ω(1−
fe)(1 + r̄m).

As previously, the demand is independent of the risk aversion for fe = fp = r̄m−r̄i
1+r̄m

. Thus,
up to the first order in fe − fp, we get

Ω(fe) ≈ Ωp +




ρσiσm +
(

1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2
− 2ρσiσm · 1+r̄i

1+r̄m
+ σ2

i


 · (fe − fp) . (73)

As checked in for the case of CRRA utility functions, the linear approximation of the demand
functionis quite good. This justifies hypothesis 2 according to which the fund manager knows
the investors’ demand function.

Without loss of precision, (73) can be simplified by replacing a(Ω) with a(Ωp) in (72).
Then, performing the same calculation as in Appendix C, we can generalize the result of
proposition 4. More importantly, we can state

Proposition 5. Within the limits of the hypothesis of this section, irrespective of the investor’s
utility function and of the distributions of returns on the benchmark portfolio and on the
managed portfolio, the optimal management fee the manager should charge is approximately
half the fee that starts to make the managed fund undesirable to the investor:

f∗ ≈ r̂m − r̂i

2
− f0

2
, (74)

where
r̂m = r̄m − a (Ωp) ρσiσm and r̂i = r̄i − a (Ωp) σ2

i (75)

are the risk-adjusted expected returns on the managed and on the benchmark portfolio.

As a corollary to this proposition, we can generalize the results derived when the benchmark
portfolio is the risk-free asset.

Corollary 1. After adjustment for the level of risk, the expected return on the managed
fund, net of all fees, is equal to the expected return on the benchmark plus the management
fee

r̂m − fe = r̂i + f∗. (76)

F Proof of lemma 1

Let us denote by U the investor’s utility function. It is assumed increasing and concave.
The demand function is solution to

max
ω

E [U ((1− ω)(1 + r̃i) + ω(1− fe)(1 + r̃m))] (77)
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We denote by 1+ r̄(ω) the average gross rate of return and by σ(ω)2 the variance of the return
on the investor’s portfolio. Then expending the utility function in the neighborhood of r̄ up
to the second order, the optimal demand solves

∂ω r̄(ω) = −U ′′(r̄)
U ′(r̄)

· ∂ωσ(ω)2

2
, (78)

where we recognize the coefficient of absolute risk aversion −U ′′/U ′. The higher order term
∂ω r̄(ω)U ′′′(r̄)σ(ω)2 has been neglected.

Expressing r̄(ω) and σ(ω)2 and substituting in the equation above, we get

−(1 + r̄i) + (1− fe)(1 + r̄m) = −U ′′(r̄)
U ′(r̄)

[
ω(1− fe)2σ2

m + (1− 2ω)(1− fe)ρσiσm − (1− ω)σ2
i

]
.

(79)
To simplify notations, we define

a(ω) := −U ′′(r̄(ω))
U ′(r̄(ω))

, (80)

so that the optimal demand function reads

Ω(fe) =

[
σ2

i − (1− fe)ρσiσm

]− a(Ω)−1 · [(1 + r̄i)− (1− fe)(1 + r̄m)]
σ2

i − 2(1− fe)ρσiσm + (1− fe)2σ2
m

. (81)

This equation remains implicit since the level of the demand appears in the right-hand side
to set the level of absolute risk aversion. But, if it does not vary too fast, it is reasonable to
make the approximation that it is locally constant.

Expanding this relation around fe = fp, we first evaluate

Ω(fp) = Ωp =
σ2

i − 1+r̄i
1+r̄m

ρσiσm

σ2
m

(
1+r̄i
1+r̄m

)2
− 2ρσiσm · 1+r̄i

1+r̄m
+ σ2

i

, (82)

and

Ω′(fp) =
ρσiσm +

(
1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a(Ωp)−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2
− 2ρσiσm · 1+r̄i

1+r̄m
+ σ2

i

, (83)

so that

Ω(fe) ' Ωp +




ρσiσm +
(

1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a(Ωp)−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2
− 2ρσiσm · 1+r̄i

1+r̄m
+ σ2

i


 · (fe − fp) (84)
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