This course covers several topics in probability theory and mathematical statistics which serve as a basis for understanding the literature in mainstream and financial econometrics. Emphasis is also on computer programming, for which we currently use Matlab.

Instructor: Prof. Dr. Marc Paolella, email: paolella@isb.unizh.ch.
Time and Location: Tuesday, 14:15-15:45, Plattenstr. 32, Thursday, 10:15, PhD student office.
Textbook: Class notes to be given out.
Grading: The final grade will be based on in-class and take-home quizzes, and homework assignments.

Course Outline: The following is the table of contents from the class notes.

Probability Theory

- Generating Functions
 - The Moment Generating Function
 * Moments and the m.g.f.
 * The Cumulant Generating Function
 * Uniqueness of the m.g.f.
 * Vector m.g.f.
 - Characteristic Functions
 * Complex Numbers
 * Laplace Transforms
 - Existence of the Laplace Transform
 - Inverse Laplace Transform
 * Basic Properties of Characteristic Functions
 * Relation between the m.g.f. and c.f.
 - If the m.g.f. exists on a neighborhood of zero
 - m.g.f. and c.f. for non-negative X
 * Inversion Formulae for Mass and Density Functions
 * Inversion formulae for the c.d.f.
 - Use of the Fast Fourier Transform
 * Fourier Series
 * Discrete and Fast Fourier Transforms
 * Applying the FFT to C.F. inversion
- Multivariate Case
- Problems

- Sums and Other Functions
 - Weighted Sums of Independent Random Variables
 - Exact Integral Expressions
 - Approximating the Mean and Variance
 - The Digamma Function
 - Problems
• The Multivariate Normal Distribution
 – Vector Expectation and Variance
 – Basic Properties of the Multivariate Normal
 – Density and Moment Generating Function
 – Simulation and c.d.f. Calculation
 – Marginal and Conditional Normal Distributions
 – Partial Correlation
 – Joint Distribution of \bar{X} and S^2 for i.i.d. Normal Samples
 – Appendix: Matrix Algebra
 – Problems

• Convergence Concepts
 – Inequalities for Random Variables
 – Convergence of Sequences of Sets
 – Convergence of Sequences of Random Variables
 * Convergence in Probability
 * Almost Sure Convergence
 * Convergence in r–Mean
 * Convergence in Distribution
 – The Central Limit Theorem
 – Problems

• Saddlepoint Approximations
 – Univariate
 * Density Saddlepoint Approximation
 * C.D.F. Saddlepoint Approximation
 * Detailed Illustration: The Normal–Laplace Sum
 – Multivariate
 * Conditional Distributions
 * Bivariate c.d.f. Approximation
 * Marginal Distributions
 – Problems

• Order Statistics
 – Distributional Theory for i.i.d. Samples
 * Univariate
 * Multivariate
 * Sample Range and Midrange
 – Further Examples
 – Distribution Theory for Dependent Samples
 – Problems
• Generalizing and Mixing
 – Basic Methods of Extension
 * Nesting and Generalizing Constants
 * Asymmetric Extensions
 * Extension to the Real Line
 * Transformations
 * Invention of Flexible Forms
 – Weighted Sums of Independent Random Variables
 * Weighted Sums of Independent χ^2 Random Variables
 – Mixtures
 * Countable Mixtures
 * Continuous Mixtures
 – Problems

• The Stable Paretian Distribution
 – Symmetric Stable
 – Asymmetric Stable
 – Moments
 * Mean
 * Fractional Absolute Moment Proof I
 * Fractional Absolute Moment Proof II
 – Simulation
 – Generalized Central Limit Theorem

• GIG and GHyp Distributions
 – Introduction
 – The Modified Bessel Function of the Third Kind
 – Mixtures of Normal Distributions
 * Mixture Mechanics
 * Moments and Generating Functions
 – The Generalized Inverse Gaussian Distribution
 * Definition and General Formulae
 * The Subfamilies of the GIG Distribution Family
 – The Generalized Hyperbolic Distribution
 * Definition, Parameters and General Formulae
 * The Subfamilies of the GHyp Distribution Family
 * Limiting cases of GHyp
 – Properties of the GHyp Distribution Family
 * Location-Scale Behavior of GHyp
 * The Parameters of GHyp
 * Alternative Parameterizations of GHyp
 * The Shape Triangle
 * Convolution and Infinite Divisibility
 – Problems
• Noncentral Distributions
 – Noncentral Chi Square
 * Derivation
 * Moments
 * Computation
 * Weighted Sums of Independent $\chi^2 (n_i, \theta_i)$ Random Variables
 – Singly and Doubly Noncentral F
 * Derivation
 * Moments
 * Exact Computation
 * Approximate Computational Methods
 - Matching the first Three Moments
 - c.d.f. Saddlepoint Approximation
 - Density Saddlepoint Approximation
 – Noncentral Beta
 – Singly and Doubly Noncentral t
 * Derivation
 - Singly Noncentral t
 - Doubly Noncentral t
 * Saddlepoint Approximation
 * Moments
 – Appendix
 * Saddlepoint Uniqueness for the doubly noncentral F
 * The Hypergeometric Functions $1 \, F_1$ and $2 \, F_1$
 – Problems

• Quadratic Forms in Normal Variables
 – Computation of the Distribution and Moments
 * Density and Distribution
 * Moments
 * Generalized Quadratic Form
 – Basic Distributional Results
 – Ratios of Quadratic Forms in Normal Variables
 * Calculation of the c.d.f.
 * Calculation of the p.d.f. of R
 – Moments of Ratios
 * For $X \sim N (0, \sigma^2 \mathbf{I})$ and $B = \mathbf{I}$
 * For $X \sim N (0, \Sigma)$
 * For $X \sim N (\mu, \mathbf{I})$
 * For $X \sim N (\mu, \Sigma)$
Mathematical Statistics

• Random Sampling and Parameter Estimation
 – Introducing Estimation: Sampling from the Urn
 • Binomial Model
 • Hypergeometric Model
 • Negative Binomial Model
 – Further Inferential Methods
 • Nonparametric p.d.f. and c.d.f. Estimation
 • Sample Moments
 • Method of Moments Estimator
 – The Likelihood Function
 • Basic Definitions and m.l.e. Mechanics
 - Scalar Parameter Case
 - Vector Parameter Case
 • Asymptotic Behavior of the m.l.e.
 – Problems

• Likelihood: Numerical Methods
 – Root Finding
 • One Parameter
 • Several Parameters
 – Approximating the Distribution of the m.l.e.
 – Numerical Likelihood Maximization
 • Newton Raphson and Quasi–Newton Methods
 • Imposing Parameter Restrictions
 • Potential Numerical Problems
 • The EM Algorithm
 – Model Under– Over– and Misspecification
 – Problems

• Likelihood and Bayesian Inference

• Unbiased Point Estimation
 – Sufficiency
 • Introduction
 • Factorization
 • Minimal Sufficiency
 • The Rao–Blackwell Theorem
 – Completeness and u.m.v.u.e.
 • Completeness
 • Lehmann–Scheffé u.m.v.u.e. Theorem
 • Ancillarity
 – Cramér–Rao Inequality
 • Univariate Case
Multivariate Case
- c.r.l.b. and the m.l.e.
 - An Example with i.i.d. Geometric Data
- Methods of Bias Reduction
 - The Bias–Function Approach
 - Median Unbiased Estimation
 - Case Study: The Correlation Coefficient
 - The Jackknife
- Problems

• Confidence Intervals
 - Definitions
 - Pivotal Method
 - Asymptotic Pivots
 - Intervals Associated with Normal Samples
 - Single Sample
 - Paired Sample
 - Two Independent Samples
 - Welch’s Method for a c.i. of \(\mu_1 - \mu_2 \) when \(\sigma_1^2 \neq \sigma_2^2 \)
 - Satterthwaite’s Approximation
 - c.d.f. Inversion
 - Continuous Case
 - Discrete Case
 - Bootstrap Confidence Intervals
 - Problems

• Hypothesis Testing

• The Linear Model
 - Introduction
 - Ordinary Least Squares
 - Generalized Least Squares
 - Stochastic Regressors
 - Robust Estimation
 - The Geometric Approach to Least Squares
 - The Projection Theorem
 - Implementation
 - Linear Parameter Restrictions
 - Estimation
 - Testing With \(h = 0 \)
 - Testing With Nonzero \(h \)
 - Examples
 - Confidence Intervals
 - Alternative Residual Calculation
 - Problems
• Fixed Effects ANOVA Models
 – Two Sample t Test for Differences in Means
 – The Two Sample t Test with Ignored Block Effects
 – One Way ANOVA with Fixed Effects
 * The Model
 * Estimation and Testing
 * Determination of Sample Size
 * The ANOVA Table
 * Computing Confidence Intervals
 * A Word on Model Assumptions
 – Problems

• Introduction to Random and Mixed Effects Models
 – One-Factor Random Effects Model
 * Satterthwaite’s Method
 – Two-Factor Nested Random Effects Model
 * All Effects Random
 * Two-Factor Mixed Nested REM
 – Three-Factor Nested Random Effects Model
 * All Effects Random
 * Classes Fixed
 * Classes and Subclasses Fixed
 – Two-Factor Crossed Random Effects Model
 * All Effects Random
 * Mixed Effects
 – Three-Factor Crossed Random Effects Model
 * All Random Effects
 * Three Factor Crossed and Nested Model
 – Improving the Satterwaite Approximation
 – Using the Bootstrap for Inference with Heterogeneous Error Variance and/or Non-normality
 – Problems

• Introduction to Time Series: The AR(1) Model
 – Moments and Stationarity
 – Least Squares and ML Estimation
 * Likelihood Derivation I
 * Likelihood Derivation II
 * Likelihood Derivation III
 * Asymptotic Distribution
 – Forecasting
 – Small Sample Properties
 * Distribution of the O.L.S. and M.L. Point Estimators
 * Alternative Point Estimators of a
 * Confidence Intervals for a
Regression Models with AR(1) Disturbances
• The AR(1) Model with Exogenous Regressors
• Point and Interval Estimation
• Problems

• AR and MA Models

• AR(p) Processes
 • Stationarity and Unit Root Processes
 • Moments
 • Estimation
 • Without Mean Term
 • Starting Values
 1. Least Squares
 2. Yule–Walker
 • With Mean Term
 • Approximate Standard Errors

• Moving Average Processes
 • MA(1) Process
 • MA(q) Processes
• Problems

• Autoregressive Moving Average Processes

• Basics of ARMA Models
• Infinite AR and MA Representations
• Closed–Form (Initial) Parameter Estimation
• Likelihood–Based Estimation
 • Covariance Structure
 • Point Estimation
 • Interval Estimation
• Forecasting
• Problems

• Correlograms

• Theoretical and Sample Autocorrelation Function
 • Definitions
 • Marginal Distributions
 • Joint Distribution
 • Support
 • Asymptotic Distribution
 • Small–Sample Joint Distribution Approximation
 • Conditional Distribution Approximation
• Theoretical and Sample Partial Autocorrelation Function
• Problems
• Identification
 – Correlogram Analysis
 – Significance Tests
 – Pattern Identification
 – Penalty Criteria
 – Use of the Conditional SACF
 – Other Methods
 – Problems